Task 1

Test Template Tree

SWEN90006-Assignment 1
Test Template Tree for Task 1

Legend

new_pc: updated pc after
executing the JMP or JZ
instruction.

proLen: total number of the
instructions from the given
input file.

Guideline 4

SWEN90006 Software Testing and Reliability

Assignment 1
Semester 2 — 2018
Name redacted

Input: instructions

Guideline 2

there exist unknown
instructions that are
not supported

instructions are all
supported -
Guideline 5

unknown instructions
no RET more than one RET one RET is attempting to
execute

unknown instructions
is not attempting to
execute

Ceor>

there exist there exist for all Rx,
{RxIxisint and {Rx | xis int and {Rx I xisint and
x<0} x> 0<=x<=31}

31}

MOV, RET and other
instructions (assume RET

MOV and RET only
(assume RET
execute correctly)

P N

Guideline 1

and MOV execute correctly) there exist
{val | val is int and
val > 65535)

there exist

{vall val is int and
val < -65535)

I ()) GGy

1\

{IMP x| x s int and JMP O e {MP x| xis int and
x <0} (not testable) x>1}

Guideline 1

Guideline 5 divisor is 0 divisor is not 0
{JZRavall Ra =0}
Guideline 1

{JZRaval | Rais int
and Ra =0}

Guideline 1

for all val

{val | valis int and
-65535<= val <=

65535}

Guideline 1

{new_pc10<=
new_pc}
(not testable)

Question

{new_pc | new_pc <
0}

for some value bin a
{new_pc | new_pc {new_pc | new_pc > {new_pc10<= {new_pc I new_pc< | | {new_pc | new_pc> Rb,
<= proLen} proLen} new_pc <= proLen} 0} proLen} b+ val > 65535
EC15 @ EC18 EC19 EC20

Do your set of equivalence classes cover the input space?

Answer
Yes

Justification

for some value b in
Rb,
b+val<0

for all b in Rb,
0 <= b+val <= 65535

My 25 equivalent classes do cover the input space because each leaf node derived does not overlap with one
another and each breakdown covers its parent node by following the guidelines.

I do not need to cover the case where there exist instructions that contain syntactical mistake because all
instructions are assumed to have no syntax errors. Similarly, | do not need to consider the case where the input
instruction is empty because it is assumed to have at least one instruction.

However, | need to consider the case that dividend is divided by 0 under “DIV” instruction. Also, | need to use

LDR and STR together as one equivalent class (EC). This is because STR alone is just a method to store values
into memory, and | need to retrieve the values back so that | can validate its correctness.

More importantly, | need to make assumptions when testing instructions {JZ, JMP, ADD, SUB, MUL, DIV, STR,
LDR}. The assumptions are MOV and RET are executing correctly so that | can use these two instructions to
examine the behaviors of the above-mentioned instructions. In addition, | need to assume RET executes
correctly to test MOV’s behavior in EC7, EC8 and EC9.

Last but not the least, test cases become untestable if there is an infinite loop and that can be an expected
behavior for the Machine class. Then we should try to avoid such cases and could choose to consider them as
syntax errors. If the program enters an infinite loop and cannot be finished or returned, we could consider it as
not passing the partitioning test cases.

Globally, the whole leaf nodes cover the input space by ensuring the properties of non-overlapping and coverage
for every partition.

Task 3

Using Boundary-value analysis, we attempt to select test cases near the boundary by selecting test cases on
and around the boundary using the 4 guidelines provided in the notes. In this task, | continue to consider the test
cases untestable if they contain infinite loops. It is because there is no way to check the Machine object’s state
using, for example, “getCount()” method, while the “execute” method is in the loop.

The Boundary-value analysis on remaining equivalent classes will be shown in the following table. Note that
1. “EC” refers to “Equivalent Class”,

2. “lIE” refers to “InvalidinstructionException”,

3. “NRE’ refers to “NoReturnValueException” and

4. “IL” refers to “Infinite loop”.

EC Boundary Boundary Test case selections Actual instructions Expected
Type generated Output
1 Number(RET) =0 Strict Using Guideline 1: 1. MOV RO 1 1. NRE
Equality 1. On point: 0 2. 0
2. Off point: -1(untestable) 2. RETRO
3. Off point: 1
2 Number(RET) > 1 Inequality, Using Guideline 2: 1. RETRO 1. 0
open 1. On point: 1 MOV R1 1
2. Off point: 2 RET R1
Using Guideline 4:
On point will generate identical
test case as EC1, so we do not
select this on point.

3 Number(unknow Inequality, Using Guideline 2: 1. RETRO 1. 0
instructions open 1. On point: 0 FOO 1 2. lIE
execute) > 0 2. Off point: 1

2. FOO1
RET RO

4 Number(unknow Strict Using Guideline 1: NA NA
instructions execute) | Equality 1. On point: 0
=0 2. Off point: -1(untestable)

3. Off point: 1

Using Guideline 4:

Testable on point and off point
will generate identical test cases
as EC3, so we do not select
these on point and off point.

5 {Rx | x is integer and Inequality, Using Guideline 2: 1. RETRO 1. 0
x < 0} open 1. On point: 0 2. lIE

2. Off point: -1 2. RETRA1

6 {Rx | x is integer and Inequality, Using Guideline 2: 1. RET R31 1. 0

x> 31} open 1. On point: 31 2. lIE
2. Off point: 32 2. RETR32

7 {val | val is integer Inequality, Using Guideline 2: 1. MOV R065535 1. 65535

and val > 65535} open 1. On point: 65535 RET RO 2. lIE

2. Off point: 65536
2. MOV RO 65536

RET RO
8 {val | val is integer Inequality, Using Guideline 2: 1. MOV RO -65535 1. -65535
and val < -65535} open 1. On point: -65535 RET RO 2. lIE

2. Off point: -65536
2. MOV RO -65536

RET RO
9 {val | val is integer Inequality, Using Guideline 4: NA NA
and -65535<=val @ closed Do not select identical tests for
<= 65535} adjacent ECs (8, 9, 10).
1. EC9: -65535 <= val and
EC10: val < -65535 have
identical tests.
2. ECS8: val > 65535 and EC10:
val <= 65535 have identical
tests.
10 Number(ADD) > 0 Inequality, Using Guideline 2: 1. MOV RO01 1. 3
open 1. On point: 0 MOV R1 2
2. Off point: 1 ADD R2 R1 RO
RET R2
Using Guideline 4:
On point for this EC will
generate identical test case as
EC7 and EC8 (combination of
MOV and RET only), so we do
not select this on point.
11 Number(SUB) > 0 Inequality, Using Guideline 2: 1. MOV RO -1 1. 3
open 1. On point: 0 MOV R1 2
2. Off point: 1 SUB R2 R1 RO
RET R2
Using Guideline 4:
Due to similar reason as EC10,
we do not select this on point.
12 Number(MUL) >0 Inequality, Using Guideline 2: 1. MOV RO -1 1. 3
open 1. On point: 0 MOV R1 -3
2. Off point: 1 MUL R2 R1 RO
RET R2
Using Guideline 4:
Due to similar reason as EC10,
we do not select this on point.
13 Forsome JMP x, {x| @ Strict Using Guideline 1: 1. JMP1 1. 1
x =1} Equality 1. On point: 1 MOV RO 1 2. 0
2. Off point: 0 (IL, untestable) RET RO
3. Off point: 2
2. JMP2
MOV RO 1

RET RO

14

15

16

17

18

For some JMP x and
n_pc which is updated
‘pc’ after executing
this JMP, {JMP x,
n_pc|xisintand x <
0 and n_pc < 0}

For some JMP x and
n_pc which is updated
‘pc’ after executing
this JMP, {JMP x,
n_pc|xisintand x >
1and n_pc <=

progLength}

For some JMP x and
n_pc which is updated
‘pc’ after executing
this JMP, {JMP x,
n_pc|xisintand x >
1and n_pc >

progLength}

{JZRaval | Rais int
and Ra != 0}

For some n_pc which
is updated ‘pc’ after
executing this JZ, {JZ
Raval, n_pc|Rais
intand Ra=0and0

<=n_pc <=
progLength}

Inequality,
open

Inequality:
x> 1: open

n_pc <=

progLength:

closed

Inequality,
open

Inequality:
Ra > 0:
open

Ra < 0:
open

Strict
Equality:
Ra=0

Inequality:
closed

Using Guideline 2: 1.
Forx<0:

1. On point: 0 (IL, untestable)

2. Off point: -1

Forn_pc<0:
3. On point: 0 (IL, untestable)
4. Off point: -1

Using Guideline 2: 1.
For x> 1:
1. On point: 1
2. Off point: 2
2.

For n_pc<=progLength:
3. On point: progLength
4. Off point: progLength + 1

Using Guideline 4:

| need to avoid generating

identical test cases as those in

EC13, so there are only two test
cases created.

Using Guideline 4: NA
Do not select identical tests for
adjacent ECs (15, 16).

Using Guideline 2&4: 1.
1. On point: 0
2. Off point: -1, 1
2.
3
Using Guideline 1: 1.
For Ra=0:
1. On point: 0
2. Off point: -1 ,1
2.

Using Guideline 2:
For 0 <= n_pc:
1. On point: 0 (IL, untestable)

JMP -1
MOV RO 1
RET RO

MOV RO 1
JMP 1
RET RO

MOV RO 1
JMP 2
RET RO

JZR0 2
MOV R1 1
RET R1

MOV RO -1
JZR0 2
RET RO

MOV RO 1
JZR0 2
RET RO
JZRO -1
MOV RO 1
RET RO

JZR0O 3
MOV RO 1
RET RO

1. NRE

2. NRE

NA

S
1
—

19

20

21

22

23

For some n_pc which
is updated ‘pc’ after
executing this JZ, {JZ
Raval, n_pc|Rais
intand Ra=0and0 >
n_pc}

For some n_pc which
is updated ‘pc’ after
executing this JZ, {JZ
Raval, n_pc|Rais
intand Ra =0 and
n_pc > progLength}

{DIVRaRbRc|Rc =
0}

{DIVRaRbRc |Rc !=
0}

{STRRb val Ra | Rb

Strict
Equality:
Ra=0

Inequality:
0>n_pc:
open
Strict
Equality:
Ra=0

Inequality:
n_pc >
progLength
Strict
Equality

Inequality:
Rc < 0: open

Rc > 0: open

Inequality,

2. Off point: -1

For n_pc <= progLength:
3. On point: progLength
4. Off point: progLength + 1

Using Guideline 4:

| need to avoid generating
identical test cases as those in
EC17, so there are only 6 test
cases created.

Using Guideline 4:

EC19 and EC18 are adjacent
equivalence classes, and EC19
will generate identical test cases
that exists in EC18.

Using Guideline 4:

EC20 and EC18 are adjacent
equivalence classes, and EC20
will generate identical test cases
that exists in EC18.

Using Guideline 1:
1. On point: 0
2. Off point: -1, 1

Using Guideline 4:

EC22 and EC21 are adjacent
equivalence classes, and EC22
will generate identical test cases
that exists in EC21.

Using Guideline 2:

3. MOV RO -1
JZRO0 -2
RET RO

4. MOV RO -1
JZR01
RET RO

5. MOV RO 1
JZRO0 -2
RET RO

6. MOV RO 1
JZR01
RET RO

NA NA

NA NA

1. MOV R1 1
DIV R2 R1 RO
RET R2

@ N =
-~ o

2. MOV R11
MOV RO 1
DIV R2 R1 RO
RET R2

3. MOV R11
MOV RO -1
DIV R2 R1 RO
RET R2

NA NA

1. MOV R065535 1. 1

+ val > 65535} open

24 {STRRbvalRa|Rb Inequality,
+ val < 0} open

25 {STRRbvalRa|0 <= Inequality:
Rb + val <= 65535} closed

Total test cases: 37

1. On point: 65535
2. Off point: 65536

Using Guideline 2:
1. On point: 0
2. Off point: -1

Using Guideline 4:

EC25, EC24 and EC23 are
adjacent equivalence classes,
and EC25 will generate identical
test cases that exists in EC23
and EC24.

NA

MOV R1 1
STR RO O R1
LDRR2R0O O
RET R2

MOV RO 65535
MOV R1 1
STR RO 1 R1
LDRR2 RO 1
RET R2

MOV R1 1
STR RO O R1
LDRR2R0O 0O
RET R2

MOV R1 1
STRRO-1R1
LDRR2 RO -1
RET R2

2.

NA

—

Task 5
Using Multi-condition Converge on only the “execute” method in the Machine class:

Now, here are listing the conditions only in “execute” method and | label them as {A-Z}:
A: while(true)
B: if (pc < 0 || pc >= progLength)
C: if (inst.equals(™))
D: if (toks.length < 2)
E: if (toks[0].equals(INSTRUCTION_ADD))
F: if (toks.length != 4)
G: else if (toks[0].equals(INSTRUCTION_SUBTRACT))
H: if (toks.length !=4)
I: else if (toks[0].equals(INSTRUCTION_MULT))
J: if (toks.length != 4)
K: else if (toks[0].equals(INSTRUCTION_DIVIDE))
L: if (toks.length != 4)
M: else if (toks[0].equals(INSTRUCTION_RETURN))
else if (toks[0].equals(INSTRUCTION_LOAD))
if (toks.length != 4)
P: else if (toks[0].equals(INSTRUCTION_STORE))
if (toks.length != 4)
R: else if (toks[0].equals(INSTRUCTION_MOVE))
S: if (toks.length = 3)
T: else if (toks[0].equals(INSTRUCTION_JUMP))
U: if (toks.length != 2)
V: else if (toks[0].equals(INSTRUCTION_JZ))
W: if (toks.length != 3)
X: if (regs[ra] == 0)
Y: else
Z: else

—_— A~ o~

Since A has a condition “true” which can never be false, only one edge is able to leave from node A. Hence, A
cannot be considered as a branch according to the definition of branch in the notes.

Therefore, the number of total test objects are 25 x 2 = 50 in this case as there are 25 branches.

1. Coverage Score of Partitioning Tests:

EC Test Case True False

1 RB BCDEGIKMNPS

2 RM BCDEGIKMNPSBCDEGIK
3 z BCDEGIKMNPRTV

4 M BCDEGIK

5 M BCDEGIK

6 M BCDEGIK

7 R BCDEGIKMNPS

8 R BCDEGIKMNPS

9 RM BCDEGIKMNPBCDEGIK

-
o
A
A
m
<

BCDEGIKMNPSBCDEGIKMNPSBCDFBCDEGIK

11 RRGM BCDEGIKMNPSBCDEGIKMNPSBCDEHBCDEGIK

12 RRIM BCDEGIKMNPSBCDEGIKMNPSBCDEGJBCDEGIK

13 TRM BCDEGIKMNPRUBCDEGIKMNPSBCDEGIK

14 RT BCDEGIKMNPSBCDEGIKMNPRU

15 ™ BCDEGIKMNPRUBCDEGIK

16 TV BCDEGIKMNPRU

17 RVYM BCDEGIKMNPSBCDEGIKMNPRTWXBCDEGIK

18 VXRM BCDEGIKMNPRTWYBCDEGIKMNPSBCDEGIK

19 VXB BCDEGIKMNPRTW

20 VXB BCDEGIKMNPRTW

21 RRKM BCDEGIKMNPSBCDEGIKMNPSBCDEGILBCDEGIK

22 RRKM BCDEGIKMNPSBCDEGIKMNPSBCDEGILBCDEGIK

23 RRPNM BCDEGIKMNPSBCDEGIKMNPSBCDEGIKMNQBCDEGIKMOBCDEGIK
24 RRPNM BCDEGIKMNPSBCDEGIKMNPSBCDEGIKMNQBCDEGIKMOBCDEGIK
25 RRPNM BCDEGIKMNPSBCDEGIKMNPSBCDEGIKMNQBCDEGIKMOBCDEGIK

After running all test cases from PartitioningTests, the true test objects met include

{B,E,G,ILK,M,N,P,R, T,V,X,Y,Z}, and the false test objects met include

{B,C,D,E,F,G,H,I,J,K.LLM,N,O,P,Q,R,S,T,U,V,W,X,Y}. Hence the coverage score =
number of test objects met 14 + 24

= x 100% = 769
total number of test objects 50 % %

2. Coverage Score of Boundary Tests:

EC Test Case True False

11 RB BCDEGIKMNPS

1.2 M BCDEGIK

21 M BCDEGIK

31 M BCDEGIK

3.2 Z BCDEGIKMNPRTV

51 M BCDEGIK

5.2 M BCDEGIK

6.1 M BCDEGIK

6.2 M BCDEGIK

71 RM BCDEGIKMNPSBCDEGIK

7.2 R BCDEGIKMNPS

8.1 RM BCDEGIKMNPSBCDEGIK

8.2 R BCDEGIKMNPS

10.1 RREM BCDEGIKMNPSBCDEGIKMNPSBCDFBCDEGIK
1.1 RRGM BCDEGIKMNPSBCDEGIKMNPSBCDEHBCDEGIK
121 RRIM BCDEGIKMNPSBCDEGIKMNPSBCDEGJBCDEGIK
13.1 TRM BCDEGIKMNPRUBCDEGIKMNPSBCDEGIK
13.2 ™ BCDEGIKMNPRUBCDEGIK

141 T BCDEGIKMNPRU

15.1 RTM BCDEGIKMNPSBCDEGIKMNPRUBCDEGIK
15.2 RT BCDEGIKMNPSBCDEGIKMNPRU

171 VXM BCDEGIKMNPRTWBCDEGIK

17.2 RVYM BCDEGIKMNPSBCDEGIKMNPRTWXBCDEGIK

17.3 RVYM BCDEGIKMNPSBCDEGIKMNPRTWXBCDEGIK

18.1 VX BCDEGIKMNPRTW

18.2 VX BCDEGIKMNPRTW

18.3 RVYM BCDEGIKMNPSBCDEGIKMNPRTWXBCDEGIK

18.4 RVYM BCDEGIKMNPSBCDEGIKMNPRTWXBCDEGIK

18.5 RVYM BCDEGIKMNPSBCDEGIKMNPRTWXBCDEGIK

18.6 RVYM BCDEGIKMNPSBCDEGIKMNPRTWXBCDEGIK

211 RKM BCDEGIKMNPSBCDEGILBCDEGIK

21.2 RRKM BCDEGIKMNPSBCDEGIKMNPSBCDEGILBCDEGIK

213 RRKM BCDEGIKMNPSBCDEGIKMNPSBCDEGILBCDEGIK

231 RRPNM BCDEGIKMNPSBCDEGIKMNPSBCDEGIKMNQBCDEGIKMOBCDEGIK
23.2 RRPNM BCDEGIKMNPSBCDEGIKMNPSBCDEGIKMNQBCDEGIKMOBCDEGIK
241 RPNM BCDEGIKMNPSBCDEGIKMNQBCDEGIKMOBCDEGIK

242 RPNM BCDEGIKMNPSBCDEGIKMNQBCDEGIKMOBCDEGIK

After running all test cases from BoundaryTests, the true test objects met include {B,E,G,|,K,M,N,P,R,T,V,X,Y,Z},
and the false test objects met include {B,C,D,E,F,G,H,|,J,K,.L,M,N,O,P,Q,R,S,T,U,VW,X,Y}. Hence the coverage
score =
number of test objects met 14 + 24
total number of test objects ~ 750

X 100% = 76%

Question 7

First of all, the coverage scores on “execute” method in the Machine class for two sets of test cases are the
same. This can be because the equivalent classes generated from the leaf nodes of the test template tree are
non-generalized and non-overlapping, which improves the performance of equivalent partitioning test cases. It
makes the multi-condition coverage similar or even the same by only considering the “execute” method.
However, if we take a closer look into the other methods such as “do_move”, the coverage may then differ.
Based on the results from task 5 alone, we cannot conclude which one is better than the other. Also, both sets
generate test cases based on the same ECs and the ECs from the test template tree covers the input domain as
explained in Task 1. Both sets of test cases are able to cover the output domain including throwing all available
exceptions (InvalidinstructionException, NoReturnValueException), return a default register’s value (=0) and
return a register’s assigned value as well. Therefore, they are both considered to have the coverage of
input/output domain.

On the other hand, in terms of killing mutants, the BoundaryTests are able to kill all five mutants | created for
Task 6. On the other hand, the PartitioningTests is only able to kill ‘mutant 2. Therefore, the BoundaryTests are
much more effective than the PartitioningTests.

In addition, according to the subject notes, boundary-value analysis can be considered as a ‘refinement’ for the
equivalent partitioning and the results are consistent with this statement. It contains total of 37 test cases to
target the values on and around the EC’s boundaries, thus perform testing better.

In conclusion, the set of test cases for boundary-value analysis is more effective than that for equivalent
partitioning.

