
SWEN90006 Software Testing and Reliability
Assignment 1

Semester 2 – 2018
Name redacted

Question
Do your set of equivalence classes cover the input space?

Answer
Yes

Justification
My 25 equivalent classes do cover the input space because each leaf node derived does not overlap with one
another and each breakdown covers its parent node by following the guidelines.

I do not need to cover the case where there exist instructions that contain syntactical mistake because all
instructions are assumed to have no syntax errors. Similarly, I do not need to consider the case where the input
instruction is empty because it is assumed to have at least one instruction.

However, I need to consider the case that dividend is divided by 0 under “DIV” instruction. Also, I need to use

Input: instructions

Guideline 4

Guideline 2

Task 1

Test Template Tree
SWEN90006-Assignment 1
Test Template Tree for Task 1

no RET one RET more than one RET

for all Rx,

{Rx | x is int and

0 <= x <= 31}

there exist

{Rx | x is int and

 x < 0}

there exist

{Rx | x is int and

x > 31}

MOV, RET and other

instructions (assume RET

and MOV execute correctly)

MOV and RET only

(assume RET

execute correctly)

DIV MULSUB ADD LDR and STRJMP JZ

JMP 0

(not testable)

{JZ Ra val | Ra != 0}

JMP 1

{JZ Ra val | Ra is int

and Ra = 0}

{JMP x | x is int and

x > 1}

Guideline 1

Guideline 6

there exist unknown

instructions that are

not supported

Guideline 6

Guideline 6

Guideline 5

EC1 EC2

EC5 EC6

EC9

EC13

EC17

instructions are all

supported

unknown instructions

is attempting to

execute

unknown instructions

is not attempting to

execute

Guideline 5

EC3 EC4

for some value b in a

Rb,

b + val > 65535

for some value b in

Rb,

b + val < 0

for all b in Rb,

0 <= b+val <= 65535

Guideline 1

EC23 EC24 EC25

{JMP x | x is int and

x < 0}

 {new_pc | 0 <=

new_pc}

(not testable)

{new_pc | new_pc <

0}

EC14 EC15

 {new_pc | new_pc

<= proLen}

 {new_pc | new_pc >

proLen}

EC16

Guideline 1Guideline 1

{new_pc | 0 <=

new_pc <= proLen}

{new_pc | new_pc <

0}

{new_pc | new_pc >

proLen}

EC18 EC19 EC20

Legend

new_pc: updated pc after

executing the JMP or JZ

instruction.

proLen: total number of the

instructions from the given

input file.

Guideline 1

divisor is 0 divisor is not 0

EC21 EC22

Guideline 5

there exist

{val | val is int and

val > 65535}

for all val

{val | val is int and

-65535<= val <=

65535}

there exist

{val | val is int and

val < -65535}

EC8EC7

Guideline 1

Guideline 1

EC10 EC11 EC12

LDR and STR together as one equivalent class (EC). This is because STR alone is just a method to store values
into memory, and I need to retrieve the values back so that I can validate its correctness.

More importantly, I need to make assumptions when testing instructions {JZ, JMP, ADD, SUB, MUL, DIV, STR,
LDR}. The assumptions are MOV and RET are executing correctly so that I can use these two instructions to
examine the behaviors of the above-mentioned instructions. In addition, I need to assume RET executes
correctly to test MOV’s behavior in EC7, EC8 and EC9.

Last but not the least, test cases become untestable if there is an infinite loop and that can be an expected
behavior for the Machine class. Then we should try to avoid such cases and could choose to consider them as
syntax errors. If the program enters an infinite loop and cannot be finished or returned, we could consider it as
not passing the partitioning test cases.

Globally, the whole leaf nodes cover the input space by ensuring the properties of non-overlapping and coverage
for every partition.

Task 3
Using Boundary-value analysis, we attempt to select test cases near the boundary by selecting test cases on
and around the boundary using the 4 guidelines provided in the notes. In this task, I continue to consider the test
cases untestable if they contain infinite loops. It is because there is no way to check the Machine object’s state
using, for example, “getCount()” method, while the “execute” method is in the loop.

The Boundary-value analysis on remaining equivalent classes will be shown in the following table. Note that
1. “EC” refers to “Equivalent Class”,
2. “IIE” refers to “InvalidInstructionException”,
3. “NRE” refers to “NoReturnValueException” and
4. “IL” refers to “Infinite loop”.

EC Boundary Boundary

Type
Test case selections Actual instructions

generated
Expected
Output

1 Number(RET) = 0 Strict
Equality

Using Guideline 1:
1. On point: 0
2. Off point: -1(untestable)
3. Off point: 1

1. MOV R0 1

2. RET R0

1. NRE
2. 0

2 Number(RET) > 1 Inequality,
open

Using Guideline 2:
1. On point: 1
2. Off point: 2

Using Guideline 4:
On point will generate identical
test case as EC1, so we do not
select this on point.

1. RET R0
MOV R1 1
RET R1

1. 0

3 Number(unknow
instructions
execute) > 0

Inequality,
open

Using Guideline 2:
1. On point: 0
2. Off point: 1

1. RET R0
FOO 1

2. FOO 1
RET R0

1. 0
2. IIE

4 Number(unknow
instructions execute)
= 0

Strict
Equality

Using Guideline 1:
1. On point: 0
2. Off point: -1(untestable)
3. Off point: 1

Using Guideline 4:
Testable on point and off point
will generate identical test cases
as EC3, so we do not select
these on point and off point.

NA NA

5 {Rx | x is integer and
x < 0}

Inequality,
open

Using Guideline 2:
1. On point: 0
2. Off point: -1

1. RET R0

2. RET R-1

1. 0
2. IIE

6 {Rx | x is integer and
x > 31}

Inequality,
open

Using Guideline 2:
1. On point: 31
2. Off point: 32

1. RET R31

2. RET R32

1. 0
2. IIE

7 {val | val is integer
and val > 65535}

Inequality,
open

Using Guideline 2:
1. On point: 65535

1. MOV R0 65535
RET R0

1. 65535
2. IIE

2. Off point: 65536
2. MOV R0 65536

RET R0
8 {val | val is integer

and val < -65535}
Inequality,
open

Using Guideline 2:
1. On point: -65535
2. Off point: -65536

1. MOV R0 -65535
RET R0

2. MOV R0 -65536
RET R0

1. -65535
2. IIE

9 {val | val is integer
and -65535 <= val
<= 65535}

Inequality,
closed

Using Guideline 4:
Do not select identical tests for
adjacent ECs (8, 9, 10).
1. EC9: -65535 <= val and

EC10: val < -65535 have
identical tests.

2. EC8: val > 65535 and EC10:

val <= 65535 have identical
tests.

NA NA

10 Number(ADD) > 0 Inequality,
open

Using Guideline 2:
1. On point: 0
2. Off point: 1

Using Guideline 4:
On point for this EC will
generate identical test case as
EC7 and EC8 (combination of
MOV and RET only), so we do
not select this on point.

1. MOV R0 1
MOV R1 2
ADD R2 R1 R0
RET R2

1. 3

11 Number(SUB) > 0 Inequality,
open

Using Guideline 2:
1. On point: 0
2. Off point: 1

Using Guideline 4:
Due to similar reason as EC10,
we do not select this on point.

1. MOV R0 -1
MOV R1 2
SUB R2 R1 R0
RET R2

1. 3

12 Number(MUL) > 0 Inequality,
open

Using Guideline 2:
1. On point: 0
2. Off point: 1

Using Guideline 4:
Due to similar reason as EC10,
we do not select this on point.

1. MOV R0 -1
MOV R1 -3
MUL R2 R1 R0
RET R2

1. 3

13 For some JMP x, {x |
x = 1}

Strict
Equality

Using Guideline 1:
1. On point: 1
2. Off point: 0 (IL, untestable)
3. Off point: 2

1. JMP 1
MOV R0 1
RET R0

2. JMP 2
MOV R0 1
RET R0

1. 1
2. 0

14 For some JMP x and
n_pc which is updated
‘pc’ after executing
this JMP, {JMP x,
n_pc | x is int and x <
0 and n_pc < 0}

Inequality,
open

Using Guideline 2:
For x < 0:
1. On point: 0 (IL, untestable)
2. Off point: -1

For n_pc < 0:
3. On point: 0 (IL, untestable)
4. Off point: -1

1. JMP -1
MOV R0 1
RET R0

1. NRE

15 For some JMP x and
n_pc which is updated
‘pc’ after executing
this JMP, {JMP x,
n_pc | x is int and x >
1 and n_pc <=
progLength}

Inequality:
x > 1: open

n_pc <=
progLength:
closed

Using Guideline 2:
For x > 1:
1. On point: 1
2. Off point: 2

For n_pc<=progLength:
3. On point: progLength
4. Off point: progLength + 1

Using Guideline 4:
I need to avoid generating
identical test cases as those in
EC13, so there are only two test
cases created.

1. MOV R0 1
JMP 1
RET R0

2. MOV R0 1
JMP 2
RET R0

1. 1
2. NRE

16 For some JMP x and
n_pc which is updated
‘pc’ after executing
this JMP, {JMP x,
n_pc | x is int and x >
1 and n_pc >
progLength}

Inequality,
open

Using Guideline 4:
Do not select identical tests for
adjacent ECs (15, 16).

NA NA

17 {JZ Ra val | Ra is int
and Ra != 0}

Inequality:
Ra > 0:
open

Ra < 0:
open

Using Guideline 2&4:
1. On point: 0
2. Off point: -1, 1

1. JZ R0 2
MOV R1 1
RET R1

2. MOV R0 -1
JZ R0 2
RET R0

3. MOV R0 1
JZ R0 2
RET R0

1. 0
2. -1
3. 1

18 For some n_pc which
is updated ‘pc’ after
executing this JZ, {JZ
Ra val, n_pc | Ra is
int and Ra = 0 and 0
<= n_pc <=
progLength}

Strict
Equality:
Ra = 0

Inequality:
closed

Using Guideline 1:
For Ra = 0:
1. On point: 0
2. Off point: -1 ,1

Using Guideline 2:
For 0 <= n_pc:
1. On point: 0 (IL, untestable)

1. JZ R0 -1
MOV R0 1
RET R0

2. JZ R0 3

MOV R0 1
RET R0

1. NRE
2. NRE
3. -1
4. -1
5. 1
6. 1

2. Off point: -1

For n_pc <= progLength:
3. On point: progLength
4. Off point: progLength + 1

Using Guideline 4:
I need to avoid generating
identical test cases as those in
EC17, so there are only 6 test
cases created.

3. MOV R0 -1
JZ R0 -2
RET R0

4. MOV R0 -1

JZ R0 1
RET R0

5. MOV R0 1

JZ R0 -2
RET R0

6. MOV R0 1

JZ R0 1
RET R0

19 For some n_pc which
is updated ‘pc’ after
executing this JZ, {JZ
Ra val, n_pc | Ra is
int and Ra = 0 and 0 >
n_pc}

Strict
Equality:
Ra = 0

Inequality:
0 > n_pc:
open

Using Guideline 4:
EC19 and EC18 are adjacent
equivalence classes, and EC19
will generate identical test cases
that exists in EC18.

NA NA

20 For some n_pc which
is updated ‘pc’ after
executing this JZ, {JZ
Ra val, n_pc | Ra is
int and Ra = 0 and
n_pc > progLength}

Strict
Equality:
Ra = 0

Inequality:
n_pc >
progLength

Using Guideline 4:
EC20 and EC18 are adjacent
equivalence classes, and EC20
will generate identical test cases
that exists in EC18.

NA NA

21 {DIV Ra Rb Rc | Rc =
0}

Strict
Equality

Using Guideline 1:
1. On point: 0
2. Off point: -1, 1

1. MOV R1 1
DIV R2 R1 R0
RET R2

2. MOV R1 1
MOV R0 1
DIV R2 R1 R0
RET R2

3. MOV R1 1
MOV R0 -1
DIV R2 R1 R0
RET R2

1. 0
2. 1
3. -1

22 {DIV Ra Rb Rc | Rc !=
0}

Inequality:
Rc < 0: open

Rc > 0: open

Using Guideline 4:
EC22 and EC21 are adjacent
equivalence classes, and EC22
will generate identical test cases
that exists in EC21.

NA NA

23 {STR Rb val Ra | Rb Inequality, Using Guideline 2: 1. MOV R0 65535 1. 1

+ val > 65535}

open 1. On point: 65535
2. Off point: 65536

MOV R1 1
STR R0 0 R1
LDR R2 R0 0
RET R2

2. MOV R0 65535
MOV R1 1
STR R0 1 R1
LDR R2 R0 1
RET R2

2. 0

24 {STR Rb val Ra | Rb
+ val < 0}

Inequality,
open

Using Guideline 2:
1. On point: 0
2. Off point: -1

1. MOV R1 1
STR R0 0 R1
LDR R2 R0 0
RET R2

2. MOV R1 1
STR R0 -1 R1
LDR R2 R0 -1
RET R2

1. 1
2. 0

25 {STR Rb val Ra | 0 <=
Rb + val <= 65535}

Inequality:
closed

Using Guideline 4:
EC25, EC24 and EC23 are
adjacent equivalence classes,
and EC25 will generate identical
test cases that exists in EC23
and EC24.

NA NA

Total test cases: 37

Task 5
Using Multi-condition Converge on only the “execute” method in the Machine class:

Now, here are listing the conditions only in “execute” method and I label them as {A-Z}:
A: while(true)

B: if (pc < 0 || pc >= progLength)
C: if (inst.equals(""))
D: if (toks.length < 2)
E: if (toks[0].equals(INSTRUCTION_ADD))

F: if (toks.length != 4)
G: else if (toks[0].equals(INSTRUCTION_SUBTRACT))

H: if (toks.length != 4)
I: else if (toks[0].equals(INSTRUCTION_MULT))

J: if (toks.length != 4)
K: else if (toks[0].equals(INSTRUCTION_DIVIDE))

L: if (toks.length != 4)
M: else if (toks[0].equals(INSTRUCTION_RETURN))
N: else if (toks[0].equals(INSTRUCTION_LOAD))

O: if (toks.length != 4)
P: else if (toks[0].equals(INSTRUCTION_STORE))

Q: if (toks.length != 4)
R: else if (toks[0].equals(INSTRUCTION_MOVE))

S: if (toks.length != 3)
T: else if (toks[0].equals(INSTRUCTION_JUMP))

U: if (toks.length != 2)
V: else if (toks[0].equals(INSTRUCTION_JZ))

W: if (toks.length != 3)
X: if (regs[ra] == 0)
Y: else

Z: else

Since A has a condition “true” which can never be false, only one edge is able to leave from node A. Hence, A
cannot be considered as a branch according to the definition of branch in the notes.

Therefore, the number of total test objects are 25 × 2 = 50 in this case as there are 25 branches.

1. Coverage Score of Partitioning Tests:
EC Test Case True False
1 RB BCDEGIKMNPS
2 RM BCDEGIKMNPSBCDEGIK
3 Z BCDEGIKMNPRTV
4 M BCDEGIK
5 M BCDEGIK
6 M BCDEGIK
7 R BCDEGIKMNPS
8 R BCDEGIKMNPS
9 RM BCDEGIKMNPBCDEGIK
10 RREM BCDEGIKMNPSBCDEGIKMNPSBCDFBCDEGIK

11 RRGM BCDEGIKMNPSBCDEGIKMNPSBCDEHBCDEGIK
12 RRIM BCDEGIKMNPSBCDEGIKMNPSBCDEGJBCDEGIK
13 TRM BCDEGIKMNPRUBCDEGIKMNPSBCDEGIK
14 RT BCDEGIKMNPSBCDEGIKMNPRU
15 TM BCDEGIKMNPRUBCDEGIK
16 TV BCDEGIKMNPRU
17 RVYM BCDEGIKMNPSBCDEGIKMNPRTWXBCDEGIK
18 VXRM BCDEGIKMNPRTWYBCDEGIKMNPSBCDEGIK
19 VXB BCDEGIKMNPRTW
20 VXB BCDEGIKMNPRTW
21 RRKM BCDEGIKMNPSBCDEGIKMNPSBCDEGILBCDEGIK
22 RRKM BCDEGIKMNPSBCDEGIKMNPSBCDEGILBCDEGIK
23 RRPNM BCDEGIKMNPSBCDEGIKMNPSBCDEGIKMNQBCDEGIKMOBCDEGIK
24 RRPNM BCDEGIKMNPSBCDEGIKMNPSBCDEGIKMNQBCDEGIKMOBCDEGIK
25 RRPNM BCDEGIKMNPSBCDEGIKMNPSBCDEGIKMNQBCDEGIKMOBCDEGIK

After running all test cases from PartitioningTests, the true test objects met include
{B,E,G,I,K,M,N,P,R,T,V,X,Y,Z}, and the false test objects met include
{B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y}. Hence the coverage score =

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑒𝑠𝑡	𝑜𝑏𝑗𝑒𝑐𝑡𝑠	𝑚𝑒𝑡
𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑒𝑠𝑡	𝑜𝑏𝑗𝑒𝑐𝑡𝑠 =

14 + 24
50 × 100% = 76%

2. Coverage Score of Boundary Tests:
EC Test Case True False
1.1 RB BCDEGIKMNPS
1.2 M BCDEGIK
2.1 M BCDEGIK
3.1 M BCDEGIK
3.2 Z BCDEGIKMNPRTV
5.1 M BCDEGIK
5.2 M BCDEGIK
6.1 M BCDEGIK
6.2 M BCDEGIK
7.1 RM BCDEGIKMNPSBCDEGIK
7.2 R BCDEGIKMNPS
8.1 RM BCDEGIKMNPSBCDEGIK
8.2 R BCDEGIKMNPS
10.1 RREM BCDEGIKMNPSBCDEGIKMNPSBCDFBCDEGIK
11.1 RRGM BCDEGIKMNPSBCDEGIKMNPSBCDEHBCDEGIK
12.1 RRIM BCDEGIKMNPSBCDEGIKMNPSBCDEGJBCDEGIK
13.1 TRM BCDEGIKMNPRUBCDEGIKMNPSBCDEGIK
13.2 TM BCDEGIKMNPRUBCDEGIK
14.1 T BCDEGIKMNPRU
15.1 RTM BCDEGIKMNPSBCDEGIKMNPRUBCDEGIK
15.2 RT BCDEGIKMNPSBCDEGIKMNPRU
17.1 VXM BCDEGIKMNPRTWBCDEGIK
17.2 RVYM BCDEGIKMNPSBCDEGIKMNPRTWXBCDEGIK
17.3 RVYM BCDEGIKMNPSBCDEGIKMNPRTWXBCDEGIK

18.1 VX BCDEGIKMNPRTW
18.2 VX BCDEGIKMNPRTW
18.3 RVYM BCDEGIKMNPSBCDEGIKMNPRTWXBCDEGIK
18.4 RVYM BCDEGIKMNPSBCDEGIKMNPRTWXBCDEGIK
18.5 RVYM BCDEGIKMNPSBCDEGIKMNPRTWXBCDEGIK
18.6 RVYM BCDEGIKMNPSBCDEGIKMNPRTWXBCDEGIK
21.1 RKM BCDEGIKMNPSBCDEGILBCDEGIK
21.2 RRKM BCDEGIKMNPSBCDEGIKMNPSBCDEGILBCDEGIK
21.3 RRKM BCDEGIKMNPSBCDEGIKMNPSBCDEGILBCDEGIK
23.1 RRPNM BCDEGIKMNPSBCDEGIKMNPSBCDEGIKMNQBCDEGIKMOBCDEGIK
23.2 RRPNM BCDEGIKMNPSBCDEGIKMNPSBCDEGIKMNQBCDEGIKMOBCDEGIK
24.1 RPNM BCDEGIKMNPSBCDEGIKMNQBCDEGIKMOBCDEGIK
24.2 RPNM BCDEGIKMNPSBCDEGIKMNQBCDEGIKMOBCDEGIK

After running all test cases from BoundaryTests, the true test objects met include {B,E,G,I,K,M,N,P,R,T,V,X,Y,Z},
and the false test objects met include {B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y}. Hence the coverage
score =

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑒𝑠𝑡	𝑜𝑏𝑗𝑒𝑐𝑡𝑠	𝑚𝑒𝑡
𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑒𝑠𝑡	𝑜𝑏𝑗𝑒𝑐𝑡𝑠 =

14 + 24
50 × 100% = 76%

Question 7
First of all, the coverage scores on “execute” method in the Machine class for two sets of test cases are the
same. This can be because the equivalent classes generated from the leaf nodes of the test template tree are
non-generalized and non-overlapping, which improves the performance of equivalent partitioning test cases. It
makes the multi-condition coverage similar or even the same by only considering the “execute” method.
However, if we take a closer look into the other methods such as “do_move”, the coverage may then differ.
Based on the results from task 5 alone, we cannot conclude which one is better than the other. Also, both sets
generate test cases based on the same ECs and the ECs from the test template tree covers the input domain as
explained in Task 1. Both sets of test cases are able to cover the output domain including throwing all available
exceptions (InvalidInstructionException, NoReturnValueException), return a default register’s value (=0) and
return a register’s assigned value as well. Therefore, they are both considered to have the coverage of
input/output domain.

On the other hand, in terms of killing mutants, the BoundaryTests are able to kill all five mutants I created for
Task 6. On the other hand, the PartitioningTests is only able to kill ‘mutant 2’. Therefore, the BoundaryTests are
much more effective than the PartitioningTests.

In addition, according to the subject notes, boundary-value analysis can be considered as a ‘refinement’ for the
equivalent partitioning and the results are consistent with this statement. It contains total of 37 test cases to
target the values on and around the EC’s boundaries, thus perform testing better.

In conclusion, the set of test cases for boundary-value analysis is more effective than that for equivalent
partitioning.

