THE UNIVERSITY OF MELBOURNE
SWEN90006: SOFTWARE TESTING AND RELIABILITY

Assignment 1
SECOND SEMESTER, 2019

Duk DATE: 18:00pM, FRIDAY, 6 SEPTEMBER, 2019

Introduction

The first assignment deals with input partitioning, boundary-value analysis, and control-flow
testing. You are given a specification and a program that implements that specification. The
aim of this assignment is to test the program using the different techniques, and to analyse the
difference between them.

You are expected to derive and compare test cases, but you are not expected to debug the
program.

The assignment is part laboratory exercise because you are expected to write a JUnit driver
program to run your test cases automatically. Some exploration may be needed here. The
assignment is also part analysis exercise as you are expected to apply the testing techniques to
derive your test cases, and to compare them. Finally, the assignment is also part competition,
as your solutions to various tasks will be evaluated against all other submissions to measure its
effectiveness and completeness.

The assignment is worth 20% of your final mark.

Description: PassBook

PassBook is a (fictional) online password manager. A password manager is a software application
that generates, stores, and retrieves login details for users.

A user has an account with PassBook. This account is protected by a master password, or
passphrase. Each user can store login details for multiple websites, identified by their URL. A
user can add a login details for a given website. The passphrase is used to encrypt all passwords,
but for this implementation, we have ignored encryption.

An API specification is available in the source file (see below).

Source code

To obtain the source for the program, fork the repository at:
https://gitlab.eng.unimelb.edu.au/tmiller/swen90006-a1-2019.git

You will have an account created on https://gitlab.eng.unimelb.edu.au/| that uses your
University of Melbourne login details.

https://gitlab.eng.unimelb.edu.au/tmiller/swen90006-a1-2019.git
https://gitlab.eng.unimelb.edu.au/

Documentation for how to fork, pull, push, merge etc. is available from the Gitlab site: https:
//gitlab.eng.unimelb.edu.au/help/user/index.md.

NOTE: If you find any functional faults in the implementation, please let us know via the
discussion board. We will correct the fault and ask that everyone pull changes. There are not
intended to be faults in the implementation, but software engineering is hard!

Building and Running the Program

The source code has been successfully built and tested on JDK 1.12 but should also work with
some earlier versions of Java.

The file build.xml contains an Ant build script, should you choose to use it. The README.md
file in the top-level folder has instructions for using this.

There are two JUnit test scripts in test/swen90006/passbook. You will need to modify each of
these to complete the tasks below. You can run these by compiling and running as a class, but
you will need to include the library files in the 1ib/ directory.

Tasks and Questions

Task 0 (0 marks)

Once you have cloned your repository, set your repository to private. Otherwise, every else can
see your mutants and your code. This can be set in Settings — General — Permissions —
Project Visibility.

Then, Add ‘Adminstrator (Qroot)’ as a developer to your repository, otherwise we will not be
able to access your code for submission. To do this, go to Settings — Members, under ‘Select
members to invite’, search for ‘Administrator’, then under ‘Choose a role permission’ select
‘Developer’, and finally click ‘Add to project’.

Task 1

Using the specification, apply equivalence partitioning to derive equivalence classes for the fol-
lowing methods in the API: addUser, loginUser, updateDetails, and retrieveDetails.

Document your equivalence partitioning process for each method using only test template trees,
listing the assumptions that you make (if any). You should have four tree: one for each method.
You will be marked only on your test template trees, so ensure that they are clear and concise.

You can omit some nodes to improve readability, provided that it is clear what you intend. For
example, in tutorial 2, if I wanted to test all 12 months of the year, I would create nodes for
JAN and DEC, and then use “...” in between them to represent the other months.

Note that as part of your input domain, you will have to consider the instance variables. These
are not parameters to any of the methods, but they are inputs.

Do your set of equivalence classes cover the input space? Justify your claim.

https://gitlab.eng.unimelb.edu.au/help/user/index.md
https://gitlab.eng.unimelb.edu.au/help/user/index.md

Task 2

Select test cases associated with your equivalence classes, and implement these in the JUnit test
driver named tests/Partitioning/swen90006/passbook/PartitioningTests.java. Use JU-
nit test method for each equivalence class. For each test, clearly identify from which equivalence
class it has been selected.

NOTE: As you will find, when implementing tests for one method, you may need to use other
methods to check that the first method has worked as expected.

Task 3

Conduct a boundary-value analysis for your equivalence classes. Show your working for this.
Select test cases associated with your boundary values.

Task 4

Implement your boundary-value tests in the JUnit test driver called
test/Boundary/swen90006/passbook/BoundaryTests. java.

Note that you can extend/inherit from the JUnit script for your partitioning tests, which will
include all tests from the parent class. A JUnit test is just a standard public Java class!

Task 5

Calculate the coverage score of your two test suites (equivalence partitioning and boundary-value
analysis) using multiple-condition coverage each of the four of the methods. You should have
eight coverage scores: partitioning and boundary scores for each of the four methods.

Show your working for this coverage calculation in a table that lists each test objective (that is,
each combination for multiple-condition coverage) and one test that achives this, if any.

You will receive marks for deriving correct coverage scores and showing how you come to this
score. You will not receive any marks for having a higher coverage score. If you think your tests
are good but do not cover some points, there is no need to add new tests to cover these (note
the score calculation below for the competition explicitly penalises larger test suites). The task
is testing your knowledge and ability to apply coverage concepts, not to improve the test suite.

NOTE: You do NOT need to draw the control-flow graph for your solution.

Task 6

Derive five mnon-equivalent mutants for the PassBook class using the mutation opera-
tors in the notes, and that you believe will be difficult to find using testing. In-
sert each of these mutants into the files programs/mutant-1/swen90006/passbook/,
programs/mutant-2/swen90006/passbook/, etc.

It is important that these mutants are both non-equivalent AND that each mutant is killed by
at least one test in your JUnit script to demonstrate that they are non-equivalent.

Importantly, do not change anything else about the mutant files except for inserting the mutant.

Question 7

Compare the two sets of test cases (equivalence partitiong and boundary-value analysis) and
their results. Which method did you find was more effective and why? You should consider
the coverage of the valid input/output domain, the coverage achieved, and the mutants it kills.
Limit your comparison to half a page. If your comparison is over half a page, you will be marked
only on the first half page.

Marking criteria

As part of our marking, we will run your boundary-value analysis JUnit scripts on everyone else’s
mutants. You will receive marks for killing other mutants as well as for deriving mutants that
are hard to kill. This will contribute 5 marks to the total.

Criterion Description Marks
Equivalence parti- Clear evidence that partitioning the input space to find 7
tioning equivalence classes has been done systematically and cor-
rectly. Resulting equivalence classes are disjoint and cover
the appropriate input space
Boundary-value Clear evidence that boundary-value analysis has been ap- 3
analysis plied systematically and correctly, and all boundaries, in-
cluding on/off points, have been identified
Control-flow analy- Clear evidence that measurement of the control-flow cri- 2
sis terion has been done systematically and correctly
There is a clear and succinct justification/documentation 2
of which test covers each objective
Discussion Clear demonstration of understanding of the topics used 1
in the assignment, presented in a logical manner
JUnit tests JUnit scripts implement the equivalence partitioning and 2.5
boundary-value tests, and find many mutants
Mutants Selected mutants are valid mutants and are difficult to find 2.5
using tests
Total 20

junit _score =

For the JUnit tests, the score for these will be calculated using the following formula:

in which IV is the number of tests in your test suite, k is the number of mutants that your test
suite kills, and 7" is the maximum number of mutants killed by any other JUnit test suiteﬂ
The entire pool of mutants are the mutants from all other submissions. Therefore, your score is

!This ensures that equivalent mutants are not counted.

the mutant score, divided by In(N) 4 10, which incentivises smaller test suitef]. The maximum
possible score is 0.1, scaled to be out of 2.5.

For the mutants, the score is:

i 2y ai

mutant _score = ———
- T

in which M is the total number of your mutants, N is the total number of other people’s test
suites, a; ; = 1 if mutant 7 is still alive after executing test suite j, and 7" < M + NN is the highest
number of mutants still alive by any student in the class. This is then scaled to be out of 2.5.
Therefore, your score is the inverse of the mutant score of all other students’ test suites on your
mutants, which incentivises you to submit hard-to-find mutants, while T' normalises the score to
ensure that everyone is rewarded for good mutants.

Important note: We determine that a mutant is found when JUnit contains a failed test.
Because of this, if a JUnit fails a test when applied to the original source code, it will fail on
everyone else’s mutants, giving people a 100% score. As such, JUnit suites that fail on the
original source code emulator will be disqualified from the tournament. As noted above, if you
find any faults in the original source code, please let us know via the discussion board.

Submission

For the JUnit test scripts, we will clone everyone’s Gitlab repository at the due time. We will
mark the latest version on the master branch of the repository. To have any late submissions
marked, please email Tim (tmiller@unimelb.edu.au) to let him know to pull changes from your
repository.

Some important instructions:
1. Do NOT change the package names in any of the files.
2. Do NOT change the directory structure.

3. In short: you should be able to complete the assignment without adding any new source
files.

JUnit scripts will be batch run automatically, so any script that does not follow the instructions
will not run and will not be awarded any marks.

The remainder of the assignment (test template tree, boundary-value analysis working, coverage,
and discussion) submit a PDF file using the Turnitin links on the subject LMS. Go to the
SWEN90006 LMS page, select Assessment from the subject menu.

Setting Out Your Solution

In the git repository, there are three sample solutions from last year’s assignment, which you can
use for ideas on how to set out your solution.

2This incentive is to resist the urge to submit a test suite of thousands of tests with the hope of increasing the
score.

tmiller@unimelb.edu.au

Note that these three sample solutions are submissions made by class members of SWEN90006.
They are examples of what the staff think are good ways to set out answers. This does not mean
that they are free from error. In particular, they all have more information than is necessary to
get full marks for this. Please resist the temptation to just trying to map your solution one this.
The assignment was very different, and moreso, these were NOT the solutions with the highest
marks.

Tips
Some tips to managing the assignment, in particular, the equivalence partitioning:

1. Ensure that you understand the notes before diving into the assignment. Trying to learn
equivalence partitioning or boundary-value analysis on a system this size is difficult.

2. Keep it simple: don’t focus on what you think we want to see — focus on looking for good
tests and then documenting them.

3. Focus on the requirements: as with any testing effort, focus your testing on the require-
ments, NOT on demonstrating the theory from the notes. If you are worrying about
whether to apply a particular part of the theory, look at whether it tests one of the re-
quirements. If not, it is probably not useful.

4. If you cannot figure out how to start your test template tree, simple start listing tests that
you think are important. Once you have a list, think about putting them into a tree.

Academic Misconduct

The University misconduct policyﬁ applies. Students are encouraged to discuss the assignment
topic, but all submitted work must represent the individual’s understanding of the topic.

The subject staff take academic misconduct very seriously. In this subject in the past, we have
successfully prosecuted several students that have breached the university policy. Often this
results in receiving 0 marks for the assessment, and in some cases, has resulted in failure of the
subject.

3See https://academichonesty.unimelb.edu.au/

https://academichonesty.unimelb.edu.au/

