Software Testing and
Reliability
Semester 2, 2018

Contents
Test Template Tree 2
Task One - Equivalence Classes 5
Task Two - Equivalence Class Test Cases 5
Task Three - Boundary Value Analysis 5
4.1 Number of Line Inputs 5
4.2 Valid Registers and Valid Values L 6
4.3 JMP/JZ and Program Counter e 6
4.4 Mathematical Operations and Register Values 6
4.5 Reading and Writing L L 7
4.6 Discrete Equivalence Classes 7
Task Four - Boundary Value Analysis Test Suite 8
Task Five - Multiple Condition Coverage 8
6.1 Equivalence Partitioning L e 9
6.2 Boundary Value Analysis 11
Task Seven - Comparison 13
7.1 Input/Output Domain Coverage i i ittt 13
7.2 Multiple Condition Coverage o e 13
7.3 Mutants L e e e 13
T4 SUIMIATY o v e e e e e e e e e e e 13

1 Test Template Tree

1 . 1 . ar| - Input Domain
Ra = valid register (i.e. one of RO to R31) storing value of a (32-bit signed Java int) Set of all Strings
val = decimal integer value in [-65535, 65535] ! !
Syntactically correct Invalid Input Domain
Al least one line (Untestable)
I
|
Single line input X .
Multiple Line Input
I
For each line of execution...
I]
Other valid
REI Ra instructions Invalid Instruction pc=N-1 _ pc<0
- EC3 ECs Tl ECO
I
l | ‘
JMP O/JZRa 0 -
EC2 Ra/Rb not in Valid registers/No Unstpe;l_ﬂed Other valid
[RO...R31] registers instruction RET Ra | y . i JZ 0 Vval
= ECT e nvalid Instruction instruction/No op ;
EC4 el EC10 = HMP Val
EC15
1 I
val = -65535 val = 65535]
EC5 EC6 Ra/Rb not in S Unspecified
[RO..R31] Valldr;e?;;s;?;smo instruction
EC11 gl EC14
1 [| 1
val = -65535 val = 65535 pc+val=0 0 == pc +val == N-1 pc +val = N-1
0 <= pc = N-1 ECi2 EC13 EC16 EC1T EC18

Figure 1: Test Template Tree Part 1

val <
0 ==pc = N-1 E

] [

Blank Line/Comment
EC35
ADD Ra Rb Re SUB RaRb Rc MUL Ra Rb Rc DIV Ra Rb Rc LDR Ra Rb val E
| | | —
I] 1 | | al
b+c=-21 b+c==2031 b*c=-2011 b*c==231 EC
EC19 EC21 EC25 EC27 b+v<0 b+ v = 55535
EC32 EC34
| [
2031 ==b+c=2"31 b-c=<-2031 p-c==2431 -2831 ==b*c=2"31 DIV RaRb Rc
EC20 EC22 EC24 EC26 Valid Operation where c =0 pe EE’E"_
ECH C3i
|
S22 ==b-c=2"4 |
EC23
- bfc=-2431 2h 3 ==bic=2"H bfc==2"31
EC28 ECZ29 EC30

Figure 2: Test Template Tree Part 2

]

val < -65535 val = 65535 pc+val=0 0 <=pc + val == N-1 pc + val = N-1
0 ==pc=N-1 EC12 EC13 EC16 EC17 EC18
| |
] | | |
Blank Liggf%ommem JZ Ra val F{I;E(;I'Ea JMP val MOV Ra val
LDR Ra Rb val Invalid Instruction EC51
I 1
[I | [|
| E(!::“«g A= pc+val=0 pc + val = N-1
EC#1 EC43 Ra/Rb not in §) Unspecified
b+ v <= 65535 b+ v = 65535 [R0...R31] vala reg'f'terwo instruction
s e ‘ registers EC50
I
| 0 == pc + val == N-1 I |
EC42
pc+val=0 0 == pc + val == N-1 pc + val = N-1 val < -65535 val = 65535
EC37 EC38 EC39 STR Rb val Ra EC48 EC49
1
b+v=0 0==b + v == 65535 b + v = 65535
EC44 EC45 EC46

Figure 3: Test Template Tree Part 3

2 Task One - Equivalence Classes

As it is safely assumed that input programs will contain at least 1 line, we can decompose the valid input domain
into single and multiple line inputs. These new nodes are further decomposed in a similar fashion while taking
into consideration the possible values that may be taken and following the provided guidelines for equivalence
class partitioning. Consequently, the resulting set of equivalence classes cover the input domain.

3 Task Two - Equivalence Class Test Cases

The Equivalence Partitioning tests and their corresponding Test IDs are listed below, together with their
associated equivalence classes.

Test ID

4 Task Three - Boundary Value Analysis

4.1 Number of Line Inputs

As the number of line inputs is defined by the input file, we can use the zero-one-many rule to decompose the
input domain. As mentioned above, it is assumed that the number of line inputs is greater than 0, so we can
consider empty input files as invalid, leaving input sizes of 1 and many remaining. We can determine that, from
the perspective of the single line input equivalence class, an input size of 1 is considered on point, and 2 is off

point.

Test Name

singleLineValidInstruction

overflowAdd2
validAdd
overflowAdd1l
overflowSubl
validSub
overflowSub2
overflowMull
validMul
overflowMul2
validDiv
invalidDiv
blankLineComment
earlyReturn
validSTRLDR
invalidSTRLDR1
invalidSTRLDR?2
validMOV
validJZ0
validJZ1
validJMP
invalidJMP1
invalidJMP2
invalidJZ01
invalidJZ02
invalidRegister
invalidVall
invalidVal2
invalidInstruction
noReturn

Equivalence Classes

EC3
EC19
EC20
EC21
EC24
EC23
EC22
EC27
EC26
EC25
EC29
EC31
EC35
EC40

EC33, EC45
EC34, EC46
EC32, EC44

EC51
EC38
EC36
EC42
EC43
EC41
EC37
EC39
EC47
EC49
EC48
EC50
EC15

Table 1: Equivalence Class Partitioning Test Suite

No test cases have been directly derived from this as the test suite derived from other classes and boundaries
already contain tests that consider these on and off points for number of input lines.

4.2 Valid Registers and Valid Values

If the valid registers are considered to be a range from R0..R31, 'R31’ and 'R0’ would be on point, while 'R32’
and 'R-1" are off point.

If a val is involved in the instruction, its valid domain is [-65535, 65535]. Thus, -65536 and 65536 are off
point, and -65535 and 65535 are on point.

The assumption has also been made that the validity of registers and values will be done in the same process
in both single and multiple line inputs, and as a result some of the derived test cases will only test the validity
within single line inputs.

The test cases derived from these will contain:

Derived Test Cases
. RET R-1

. RET RO

. RET R31

. RET R32

MOV R31 65535

. MOV R31 65536

. MOV RO 65535

. MOV RO -65535
9. MOV R32 65536
10. MOV R31 -65535
11. MOV R31 -65536
12. MOV R32 -65536

4.3 JMP/JZ and Program Counter

The program counter is restricted between 0 and N-1, where N is the number of lines of input. Thus -1 and N
are off point, and 0 and N-1 are on point.

For the instruction JZ to change the program counter, it requires a val of 0. As val can take values between
[-65535, 65535], 0 is considered on point, and -1 and 1 are considered off point.

The test cases derived from these will be:

Derived Test Cases
1. JMP topc =10

2. JMP to pc = -1

3. JMP to pc = N-1
4. JMP to pc =N

5. JZ0topc=0

6. JZ 0 to pc = -1

7. JZ 0 to pc = N-1

8. JZ0topc=N

9. JZ -1 to pc = N-1
10. JZ 1 to pc = N-1

4.4 Mathematical Operations and Register Values

A register stores a 32-bit signed Java integer, meaning it can hold the value within [—23%,231). Thus, —23! and
231 _ 1 are on point, while —23' — 1 and 23! are off point.

EC31, which handles divide by zero invalid operations, requires Rc to hold a value of 0. Thus, -1 and 1 are
off point, and 0 is on point for c.

The test cases derived from these will be:

Derived Test Cases

1. DIV Ra Rb Rc where ¢ = 0

2. DIV Ra Rb Rc where ¢ = 1

3. DIV Ra Rb Rc where ¢ = -1

4. ADD Ra Rb Rc where b = 2147483646 and c= 1

5. ADD Ra Rb Rc where b = 2147483646 and ¢ = 2
6. ADD Ra Rb Rc where b = -2147483646 and ¢ = -2
7. ADD Ra Rb Rc where b = -2147483646 and ¢ = -3
8. SUB Ra Rb Rc where b = 2147483646 and ¢ = -1
9. SUB Ra Rb Rc where b = 2147483646 and ¢ = -2
10. SUB Ra Rb Rc where b = -2147483646 and ¢ = 2
11. SUB Ra Rb Rc where b = -2147483646 and ¢ = 3
12. MUL Ra Rb Rc where b = 1073741823 and ¢ = 2
12. MUL Ra Rb Rc where b = 1073741824 and ¢ = 2
13. MUL Ra Rb Rc where b = -1073741824 and ¢ = 2
14. MUL Ra Rb Rc where b = -1073741825 and ¢ = 2

4.5 Reading and Writing

The address space is limited to values within [0, 65535]. Thus, 0 and 65535 are on point, and -1 and 65536 are
off point. The test cases derived from these will involve:

Derived Test Cases

STR Rb val Ra where b + v = -1 && LDR Ra Rb val where b + v = -1 (b = -1 val = 0)

STR Rb val Ra where b + v = -1 && LDR Ra Rb val where b + v =-1 (b = 0 val = -1)

STR Rb val Ra where b + v = 0 && LDR Ra Rb val where b + v =0 (b = 0 val = 0)

STR Rb val Ra where b + v = 65535 && LDR Ra Rb val where b + v = 65535 (b = 65535 val = 0)
STR Rb val Ra where b + v = 65535 && LDR Ra Rb val where b + v = 65535 (b = 0 val = 65535)
STR Rb val Ra where b + v = 65536 && LDR Ra Rb val where b + v = 65536 (b = 65535 val = 1)
STR Rb val Ra where b + v = 65536 && LDR Ra Rb val where b + v = 65536 (b = 1 val = 65535)

N otk e

4.6 Discrete Equivalence Classes

In addition to the specified on and off points above concerning ranges and other values, discrete equivalent
classes will be tested as well.
The test cases derived from these will involve:

Derived Test Cases

1. Empty lines and lines with only comments
2. Executing RET before final line in program
3. No RET in program

4. Tnvalid instruction (RAT RO)

5 Task Four - Boundary Value Analysis Test Suite

Test ID Tests Boundaries/Classes
1 invalidLowerRegister EC4, EC11, EC47
2 validRegister EC4, EC11, EC47
3 invalidHigherRegister EC4, EC11, EC47
4 validMov EC51, EC47, EC48, EC49
5 invalidMov1 EC51, EC49
6 invalidMov2 EC51, EC48
7 invalidMov3 EC51, EC49, EC47
8 invalidMov4 EC51, EC48, EC47
9 invalidInstruction EC50
10 validJMP EC42, EC41, EC43
11 invalidJMP1 EC42, EC41
12 invalidJMP2 EC42, EC43
13 validJZ EC36, EC38, EC37, EC39
14 invalidJZ1 EC38, EC37
15 invalidJZ2 EC38, EC39
16 validDiv EC29, EC31
17 validAdd EC20, EC19, EC21
18 overflowAdd1 EC20, EC21
19 overflowAdd2 EC20, EC19
20 validSub EC23, EC22, EC24
21 overflowSub1 EC23, EC24
22 overflowSub2 EC23, EC22
23 validMul EC26, EC25, EC27
24 overflowMull EC26, EC27
25 overflowMul2 EC26, EC25
26 validLDRSTR EC33, EC45, EC32, EC44, EC34, EC46
27 uppLDRSTR EC33, EC45, EC34, EC46
28 negLDRSTR EC33, EC45, EC32, EC44
29 earlyReturn EC40
30 blankLineComment EC35
31 noReturn EC15

Table 2: Boundary Value Test Suite

6 Task Five - Multiple Condition Coverage

The execute method contains:
e 1 if statement with 2 conditions
e 12 if statements with 1 condition
e 1 if-else chain with 11 different cases
From this we determine:
e 2+ 12+ 1 =15 conditions

e 224+ 12 %2+ 11 = 39 condition permutations

Condition Branch Code Permutations

C1 | C2 pc <0 || pc >= progLength {00, 01, 10, 11}

C3 if (inst.equals(*”)) {0, 1}

C4 if (toks.length <2) {0, 1}

C5 If else chain beginning with: {ADD, SUB, MUL, DIV, RET,
if (toks[0].equals(INSTRUCTION ADD)) LDR, STR, MOV, JMP, JZ, de-

fault}

Cé6 (ADD) if (toks.length != 4) {0, 1}

Cc7 (SUB) if (toks.length != 4) {0, 1}

C8 (MUL) if (toks.length != 4) {0, 1}

C9 (DIV) if (toks.length != 4) {0, 1}

C10 (LDR) if (toks.length != 4) {0, 1}

C11 (STR) if (toks.length != 4) {0, 1}

C12 (MOV) if (toks.length != 3) {0, 1}

C13 (JMP) if (toks.length != 2) {0, 1}

C14 (JZ) if (toks.length != 3) {0, 1}

C15 (JZ) if (regs|ra] == 0) {0, 1}

Table 3: Multiple Condition Coverage Table for execute method

6.1 Equivalence Partitioning

As shown in Table 4 and 5, 11 out of 39 objectives were unmet. One of the objectives {C1,C2} = {11} is
impossible to meet - the program counter cannot be simultaneously larger than or equal to progLength (number

of lines in the program), and be less than 0, as progLength cannot take negative values.

The remaining unmet objectives relate to the syntax of the grammar of the provided instructions. As it was
assumed that the provided programs would be syntactically correct, the chosen test cases do not account for

these token length conditions.
The multiple condition coverage can be calculated with:

Number of Unmet Objectives

Total Number of Objectives

=—=72%

Test| {C1,C2} | C3 | C4 | C5 C6 [CT|C8 | C9|Cl0 | C1l1 | C12 | C13 | C14 | C15
ID
1 {00}{01} 0 0 MOV 0
2 {00} 0 0 MOV, ADD, | 0 0 0
MUL, RET
3 {00} 0 0 MOV, ADD, | 0 0
RET
4 {00} 0 0 MOV, MUL, | 0 0 0
ADD, RET
5 {00} 0 0 MOV, MUL, 0 0 0
SUB, RET
6 {00} 0 0 MOV, MUL, 0 0 0
SUB, RET
7 {00} 0 0 MOV, MUL, 0 0 0
SUB, RET
8 {00} 0 0 MOV, MUL, | 0 0 0
ADD, RET
9 {00} 0 0 MOV, MUL, 0 0
RET
10 {00} 0 0 MOV, MUL, 0 0 0
SUB, RET
11 {00} 0 0 MOV, DIV, 0 0
RET
12 {00} 0,110 MOV, DIV, 0 0
RET
13 {00} 1 0 MOV, RET 0
14 {00} 0 0 MOV, ADD, | 0 0
RET
15 {00} 0,110 MOV, SUB, | 0 0 0 0 0 0 0 0,1
JZ, STR,
ADD, JMP,
LDR, RET
16 {00} 0 0 MOV, STR, 0 0 0
LDR, RET
17 {00} 0 0 MOV, STR, 0 0 0
LDR, RET
18 {00} 0 0 MOV, RET 0
19 {00} 0 0 MOV, JZ, 0 0 1
RET
20 {00} 0 0 MOV, JZ, 0 0 0
RET
21 {00} 0 0 MOV, JMP, 0 0
RET
22 {00}{01} 0 0 MOV, JMP, 0 0
RET
23 {00}{10} 0 0 MOV, JMP, 0 0
RET
24 {00}{10} 0 0 MOV, JZ, 0 0 1
RET
25 {00}{01} 0 0 MOV, JZ, 0 0 1
RET
26 {00} 0 0 MOV 0
27 {00} 0 0 MOV 0
28 {00} 0 0 MOV 0
29 {00} 0 0 MOV, de- 0
fault
30 {00} {01} | O 0 MOV, ADD | 0 0

Table 4: Equivalence Partitionjgg Multiple Condition Coverage

Condition

{CiC2}

C4

C5

C6

C10

C11

C12

C13

Cl4

C15

Seen

{00},
{o1},
{10}

0, 1

MOV,
ADD,
SUB,
MUL,
DIV,
LDR,
STR,
RET,
JMP,
JZ,
de-
fault

0,1

Missing

{11}

1

1

1

1

1

1

1

1

Table 5: Equivalence Partitioning Multiple Condition Coverage Objectives

6.2 Boundary Value Analysis

As demonstrated in Table 6 and 7, 11 out of 39 objectives were unmet. One of the objectives {C1,C2} = {11} is
impossible to meet - the program counter cannot be simultaneously larger than or equal to progLength (number
of lines in the program), and be less than 0, as progLength cannot take negative values.

The remaining unmet objectives relate to the syntax of the grammar of the provided instructions. As it was
assumed that the provided programs would be syntactically correct, the chosen test cases do not account for
these token length conditions.

The multiple condition coverage can be calculated with:

Number of Unmet Objectives

28

Total Number of Objectives 39

11

=—=72%

Test| {C1,C2} | C3 | C4 | C5 C6 | C7T|C8|C9|Cl0 | C11 | Cl12 | C13 | C14 | C15
ID
1| {00} 0 |0 |RET
2| {00} 0 |0 |RET
3 | {00} 0 |0 |RET
4 | {00} 0 |0 | MOV, RET 0
5 | {00} 0 |0 | MOV, RET 0
6 | {00} 0 |0 | MOV, RET 0
7| {00} 0 |0 | MOV, RET 0
8 | {00} 0 [0 | MOV, RET 0
9 {00} 0 0 default
10 | {00} 0 |0 | MOV, 0 0 0 0,1
JZ,JMP,
RET
11 | {001{i0} [0 |0 | MOV, JZ 0 10 |0 1
JMP
12 | {00}{01} [0 |0 | JMP 0
13 | {00} 0 [0 |JZ MOV, 0 0 |01
RET
14 | {001{10} [0 |0 |JZ MOV 0 0 1
15 | {0001} [0 |0 |JzZ 0 1
16 | {00} 0 |0 | MOV, DIV, 0 0
RET
17 | {00} 0 |0 | MOV, MUL, | 0 0 0
ADD, RET
18 | {00} 0 |0 | MOV, MUL, | 0 0 0
ADD, RET
19 | {00} 0 0 MOV, MUL, | 0 0 0
ADD, RET
20 {00} 0 0 MOV, MUL, 0 0 0
SUB, RET
21 | {00} 0 |0 | MOV, MUL, 0 |0 0
SUB, RET
22 | {00} 0 0 MOV, MUL, 0 0 0
SUB, RET
23 | {00} 0 |0 | MOV, MUL, 0 0
RET
24 | {00} 0 |0 | MOV, MUL, | 0 0 0
ADD, RET
25 | {00} 0 0 MOV, MUL, 0 0 0
SUB, RET
26 | {00} 0 |0 | MOV, STR, 0 0 0
LDR, RET
27 {00} 0 0 MOV, ADD, | 0 0 0 0
STR, LDR,
RET
28 | {00} 0 |0 | MOV, STR, 0 0 0
LDR, RET
29 | {00} 0 |0 | MOV, ADD, | 0 0
RET
30 | {00} 0,10 MOV, RET 0
31 | {00}{01} |0 |0 |MOV,ADD |0 0

Table 6: Boundary Value Analysis Multiple Condition Coverage

12

Condition | {C1C2}| C3 | C4 | C5 C6 | C7|C8|C9|Cl0| C11 | C12 | C13 | C14 | C15

Seen {00}, 0,110 MOV, | 0 0 0 0 0 0 0 0 0 0,1
{01}, ADD,
{10} SUB,
MUL,
DIV,
LDR,
STR,
RET,
JMP,
JZ,
de-
fault

Missing | {11} 1 1 [1 |1 |1 |1 1 1 1 1

Table 7: Boundary Value Analysis Multiple Condition Coverage Objectives

7 Task Seven - Comparison

7.1 Input/Output Domain Coverage

As both equivalence partitioning and boundary value analysis are derived from equivalence classes, both tech-
niques represent the input domain in a very similar fashion. As long as the derived equivalence classes are
disjoint and span the input domain, the resulting input domain coverage for the two sets of test cases should
be adequate.

7.2 Multiple Condition Coverage

The resulting multiple condition coverage for both sets of test cases were the same - 72%. As the remaining unmet
objectives were either impossible, or not considered within the scope of our assumed inputs, we can observe that
both equivalence partitioning and boundary value analysis performed quite well under this particular metric.

7.3 Mutants

Due to the nature of how mutants are generated, boundary value analysis outperforms equivalence partitioning
in this regard. Mutations which modify constants or inequalities by small amounts are much more likely to
be caught through boundary value analysis, rather than equivalence partitioning, which treats all inputs in a
particular equivalence class as equally as valuable. These types of mutations are also representative of some of
the more common errors that programmers can find themselves making.

Additionally, as the technique of utilising on and off points to derive test cases are still based upon the
original equivalence classes, the benefits of using equivalence partitioning are not lost from using boundary
value analysis.

7.4 Summary

Based on these evaluation metrics and results, it was determined that boundary value analysis was more valuable
when compared to equivalence partitioning. Rather than two entirely separate techniques of deriving a set of
test cases, boundary value analysis can be considered to be an extension of equivalence partitioning. Although
the resulting tests may be more complicated to create, based on its performance on my own generated mutants,
boundary value analysis provides a more sophisticated set of test cases.

13

