SWEN90006
SOFTWARE TESTING AND RELIABILITY
ASSIGNMENT 1

1D : list of instructions

/\

INSTRUCTIONS [i] =
RET

GUIDELINE 1

INSTRUCTIONS [i]
= RET

EC2 R=0 0sR=31 R>31

EC3

GUIDELINE 2

INSTRUCTIONS [i] =
ADD

INSTRUCTIONS [i] =
sus

INSTRUCTIONS [i] =| [INSTRUCTIONS [=| |INSTRUCTIONS] = INSTRUCTIONS i
MUL DIV JMP iz

EC4

AN AN

value= 0 value I= 0 Ra=0

Ral=0

[ecas]

A RN

EC15

INSTRUCTIONS [i] =
MOV

INSTRUCTIONS [i] = ‘NSTRU&:‘F?NS n=
STR

Rb+v<0 Rb +V > 65535 Rb+v<0 Rb +v = 65535

[Ec9] [Ec21] EC22

Value +i > len Value +i>

-65535 = Value = 65535

e 0svalue +i=len 0= Value = len

(INSTRUCTION) (INSTRUCTION)

EC10 l EC13

len
value +i<0 (INSTRUCTIONS; Value =i <0 (INSTRUCTIONS) /
EC12 ‘ EC 14 ‘

0sRb+vs= 0sRb+vs
65535 65535

GUIDELINE 1
EC20 EC23

Value = -65535

Value > 65535

EC 16

Figure 1.0 Test Template Tree

GUIDELINE 1

EC 18

Based on the specification requirement, the input program in Machine class on

execute method is a list of instruction strings. Each line or each string consists of an
instruction which has specific rules for different type of command.

Assuming that all syntax are correct, the format of the instructions (e.g grammar,

order) will not be checked.

First, related to a condition that in the last of instructions must have ‘RET’ command.
The invalid class will be a list of instructions with no ‘RET" command in the last

instruction

EClinvalid = { INSTRUCTIONS | INSTRUCTIONS [i] != RET}

For each <<REGISTER>> element, as the input condition needs to be specified within
arange, which is 0-31. Based on Guideline 1, some equivalence classes which consider
that specification are built. This condition for R range will be applied into other
instructions, but it will not be duplicated to the other equivalence classes to prevent
redundant equivalence classes and tree explosion. Hence, there are two equivalence
classes as the invalid inputs of R that generate InvalidinstructionException in the
program. The valid R will be applied in the other equivalence classes.

EC2invalid ={INSTRUCTIONS | R<0}
EC3invalid ={INSTRUCTIONS | R>31}

Based on Guideline 2, each of specific instructions is considered in a different
equivalence class.

EC4valid = { INSTRUCTIONS | INSTRUCTIONS [i] = ADD}
EC5valid = { INSTRUCTIONS | INSTRUCTIONS [i] = SUB}
EC6valid = { INSTRUCTIONS | INSTRUCTIONS [i] = MUL}

In ‘DIV’ operation, the value of denominator, which is Rc, resulting in different
behavior in the program, which is no-op.

EC7valid = { INSTRUCTIONS | INSTRUCTIONS [i] = DIV n Rc = 0}
EC8valid = { INSTRUCTIONS | INSTRUCTIONS [i] = DIV " Rc != 0}

In JMP’ and ‘JZ’ operations, the sum of the input value and the line instruction (i / pc)
should not less than 0, and should not more than the number of line instructions as it
generates NoReturnValueException in the program. Guideline 1 is applied in this case
for splitting the value range.

EC9invalid = { INSTRUCTIONS | INSTRUCTIONS [i] = JMP M value != 0 M value + i < 0}
EC10valid = { INSTRUCTIONS | INSTRUCTIONS [i] = JMP nvalue =0 n 0 < value +1i <
len (INSTRUCTIONS)}

EC11invalid = { INSTRUCTIONS | INSTRUCTIONS [i] = JMP n value +i > len
(INSTRUCTIONS)}

EC25valid = { INSTRUCTIONS | INSTRUCTIONS [i] = JMP ~ value = 0}

EC12invalid = { INSTRUCTIONS | INSTRUCTIONS [i] =JZ ~ Ra=0 value +i< 0}
EC13valid = { INSTRUCTIONS | INSTRUCTIONS [i] =JZ n Ra=0n 0<value +i < len
(INSTRUCTIONS)}

EC14 invalid = { INSTRUCTIONS | INSTRUCTIONS [i]=JZ n Ra=0n value +i> len
(INSTRUCTIONS)}

EC15valid = { INSTRUCTIONS | INSTRUCTIONS [i] =JZ ~ Ra !=0}

For each <<VALUE>> element, to satisfy the input condition, which is an integer value
between -65535 and 65535, some equivalence classes which consider that
specification are built based on Guideline 1. Similar with instruction R, in order to avoid
the redundancy, it is also assumed that this value condition is applied in all
instructions.

EC16invalid = { INSTRUCTIONS | INSTRUCTIONS [i] = MOV N value < -65535}
EC17valid = { INSTRUCTIONS | INSTRUCTIONS [i] = MOV M -65535 < value < 65535}
EC18invalid = { INSTRUCTIONS | INSTRUCTIONS [i] = MOV N value > 65535}

In order to handle LDR and STR operation, which contribute to an address value, the
sum of Rb and the value should be in the range of 0 and 65535. Otherwise, it will do
nothing (no-op). Guideline 1 is applied for these equivalence classes.

EC19invalid = { INSTRUCTIONS | INSTRUCTIONS [i] = STR N Rb +v < 0}
EC20valid = { INSTRUCTIONS | INSTRUCTIONS [i] = STR ™ 0 < Rb +v < 65535}
EC21linvalid = { INSTRUCTIONS | INSTRUCTIONS [i] = STR » Rb + v > 65535}
EC22invalid = { INSTRUCTIONS | INSTRUCTIONS [i] = LDR N Rb + v < 0}
EC23valid = { INSTRUCTIONS | INSTRUCTIONS [i] = LDR m 0 < Rb +v < 65535}
EC24invalid = { INSTRUCTIONS | INSTRUCTIONS [i] = LDR N Rb + v > 65535}

With the assumption of syntax correct, as the set of equivalences classes are built
based on the specifications of the input conditions, all of those equivalence classes
already cover all the input space. For example, it can be seen in the case of value
condition that should not be smaller than -65535 and no larger than 65535. Some
equivalence classes are created to cover all possibilities inputs whether it is valid or
invalid. Hence, there are three possible input range that may occur in that case and
all of them are included in the equivalence classes. Those possibilities are a value
smaller than -65535 and larger than 65535 which are considered as the invalid input,
then the valid input is between -65535 and 65535.

The equivalence classes which has no boundary will use the original test case from
equivalence partitioning. Otherwise, on point and off point values are picked in each
equivalence classes which has boundary. If more than one equivalence class produce
the same on point/off point, there will be only one chosen because that condition
could generate the same test case.

EC Boundaries On Point Off Point

EC2 {INSTRUCTIONS | R<0} RO R-1

EC3 {INSTRUCTIONS | R>31} R31 R32

EC7 { INSTRUCTIONS | INSTRUCTIONS | Rc=0 Rc=-1
[i]=DIV N Rc=0} Rc=1

ECO { INSTRUCTIONS | INSTRUCTIONS | value+1=0 value+1=-1
[i]=JMP nvalue +i< 0}

EC 10 { INSTRUCTIONS | value+i=5

INSTRUCTIONS [i]=JMP N0 <
value +i < len (INSTRUCTIONS)}

Assuming len(INSTRUCTION) =5

EC11 { INSTRUCTIONS | value+i=6
INSTRUCTIONS [i] = JMP m value
+i>len (INSTRUCTIONS)}

Assuming len(INSTRUCTION) =5

EC12 { INSTRUCTIONS | INSTRUCTIONS | value+i=0 value+i=-1
[(1=JZ n Ra=0n value+i<0}

EC13 { INSTRUCTIONS | value+i=5
INSTRUCTIONS [i]=JZ n Ra=0
N 0<value+i<len
(INSTRUCTIONS)}
Assuming len(INSTRUCTION) =5
EC14 { INSTRUCTIONS | value+i=6
INSTRUCTIONS [i]=JZ n Ra=0
M value +i>len
(INSTRUCTIONS)}
Assuming len(INSTRUCTION) =5
EC16= | {INSTRUCTIONS | value = -65535 value = -65536
INSTRUCTIONS [i] = MOV N
value < -65535}
EC17 { INSTRUCTIONS | value = 65535
INSTRUCTIONS [i] = MOV N
-65535 < value < 65535}
EC18 { INSTRUCTIONS | value = 65536
INSTRUCTIONS [i] = MOV N
value > 65535}
EC19 { INSTRUCTIONS | INSTRUCTIONS [Rb+v=0
[[]=STRN Rb+v<0}
EC20 { INSTRUCTIONS | Rb + v =65535 Rb+v=-1
INSTRUCTIONS [i(]=STRN 0 <
Rb + v < 65535}
EC21 { INSTRUCTIONS | Rb + v =65536
INSTRUCTIONS [i]=STR " Rb +
v > 65535}
EC22 { INSTRUCTIONS | Rb+v=-1
INSTRUCTIONS [i]=LDR n Rb +
v <0}
EC23 { INSTRUCTIONS | INSTRUCTIONS [Rb+v=0 Rb + v =65536
[i]=LDR N 0<Rb+v < 65535}
EC24 { INSTRUCTIONS | INSTRUCTIONS | Rb + v = 65535
[i] = LDR N Rb +v > 65535}
EC25 { INSTRUCTIONS | INSTRUCTIONS | value=0 value =-1
[i] =JMP nvalue = 0} value=1

Table 1.0 Boundary Analysis

Multiple-conditions coverage
In execute method, there are :

e 12 if statements containing a single condition =12 x 2!
e 1if statements containing two conditions = 1 X 22
e 1switch statement with 11 cases =8

Total : 12 + 4 + 8 = 39 possibilities

Condition Possible Objective
Outputs
Cl |if (pc < O || pc >=|truefalse 1
length(instructions)) false false 2
false true 3
true true 4
C2 | ifinstruction.equals(“”) true 5
false 6
C3 | if (length(token) < 2) true 7
false 8
C4 | switch (instructions]i]) ADD 9
SUB 10
MUL 11
DIV 12
MOV 13
JZ 14
JMP 15
STR 16
RET 17
LDR 18
INVALID 19
C5 | ADD -if (length(token) !=4) | true 20
false 21
C6 | SUB -if (length(token) !=4) | true 22
false 23
C7 | MUL - if (length(token) !=4 | true 24
false 25
C8 | DIV -if (length(token) !=4 true 26
false 27
C9 | LDR-if (length(token) =4 | true 28
false 29
C10 | STR - if (length(token) =4 | true 30
false 31
C11 | MOV - if (length(token) =3 | true 32

false 33
C12 | JMP - if (length(token) =2 | true 34
false 35
C13 | JZ - if (length(token) != 3 true 36
false 37
Cl14 | JZ-if (Ra== 0) true 38
false 39

Table 2.0 Multiple-condition for the program

e Multiple-condition coverage in equivalence partitioning

Test Case

Meet with Objective

EC1

ADD R1R2R3

2,6,8,9, 21

EC2

RET R1

ADD R1-32 R2R3

2,6,8,9,17,21

EC3

RET R1

ADD R100 R2 R3

2,6,8,9,17,21

EC4

MOV R1 4
MOV R2 5

ADD R3 R1R2
RET R3

2,5,6, 8,13,17,21,33

EC5

MOV R1 10
MOV R2 15
SUB R3 R1R2
RET R3

2,6,8,10,13,17,23, 33

EC6

MOV R1 100
MOV R2 0
MUL R3 R1 R2
RET R3

2,6,8,11, 13, 25,33

EC7

MOV R1 100
MOV R2 0
DIV R3 R1 R2
RET R3

2,6,8,13,12,17, 27,33

EC8

MOV R1 100
MOV R2 20
DIV R3 R1 R2
RET R3

2,6,8,13,12, 17, 27,33

ECO

MOV R1 100
MOV R2 20

2,6,8,13,15,17, 33, 35

JMP -3
RET R3

EC10

MOV R1 100
MOV R2 20
JMP 2

MOV R3 30
RET R2

2,6,8,13,15,17,33,35

EC11

MOV R1 100
MOV R2 20
JMP 2

RET R3

2,3,6,8,13,15,17, 33, 35

EC12

MOV R1 100
MOV R2 0
JZR2 -4

RET R1

2,6,8, 13,14, 33,37, 38

EC13

MOV R1 100
MOV R2 0
JZR21

RET R1

2,6,8,13,14,17,33,37, 38

EC14

MOV R1 100
MOV R2 0
JZR2 10
RET R1

2,3,6,8,13,17, 14, 33, 37,38

EC15

MOV R1 100
MOV R2 5
JZR2 -4

RET R1

1,2,6,8,613,17,14, 33,37, 39

EC16

MOV R1 -655888
MOV R2 5
RET R1

2,6,8,13,17,33

EC17

MOV R1 100
MOV R2 5
RET R1

2,6,8,13,17,33

EC18

MOV R1 777777
MOV R2 5
RET R1

2,6,8,13,17,33

EC19

MOV R1 2

2,6,8,13,16,17,18, 29, 31, 33

MOV R2 100
STR R1-90 R2
LDR R4 R1-90
RET R4

EC20 | MOV R1 2 2,6,8,13,17,18, 29,31, 33
MOV R2 100
STR R1 90 R2
LDR R4 R1 90
RET R4

EC21 | MOV R1 10 2,6,8,13,17,18, 29,31, 33
MOV R2 100
STR R1 65532 R2
LDR R4 R1 65532
RET R4

EC22 | MOV R1 2 2,6,8,13,17,18, 29,31, 33
MOV R2 100
STR R1-90 R2
LDR R4 R1-90
RET R4

EC23 | MOV R1 2 2,6,8,13,17,18, 29, 31, 33
MOV R2 100
STR R1 90 R2
LDR R4 R1 90
RET R4

EC24 | MOV R1 10 2,6,8,13,17,18, 29,31, 33
MOV R2 100
STR R1 65532 R2
LDR R4 R1 65532
RET R4

EC25 | MOV R1 100 2,6,8,13,15,17, 33,35
MOV R2 20
JMP O
RET R3

Table 3.0 Multiple-condition coverage in equivalence partitioning

With equivalence partitioning, 12 conditions are not met. Objective 4 is logically not
possible, and the rest conditions are not met because of syntax correct assumption. In
fact, in the program code there are some conditions to specifically check whether the
length of the instruction syntax is correct or not.

. . . . 27
Multiple-condition coverage result for equivalence partitioning : 39— 69 %

e Multiple-condition coverage in boundary analysis

EC

Test Case

Meet with Objective

EC1

ADD R1R2R3

2,6,8,9, 21

EC2A

ADD RO R2 R3
RET R1

2,6,8,9,17,21

EC2B

ADD R1-1R2R3
RET R1

2,6,8,9,17,21

EC3A

ADD R31R2 R3
RET R31

2,6,8,9,17,21

EC3B

ADD R32 R2 R3
RET R1

2,6,8,9,17,21

EC4

MOV R1 4
MOV R2 5

ADD R3 R1R2
RET R3

2,5,6,8,9,13,17, 21, 33

EC5

MOV R1 10
MOV R2 15
SUB R3 R1R2
RET R3

2,6,8,10,13,17,23,33

EC6

MOV R1 100
MOV R2 0
MUL R3 R1 R2
RET R3

2,6,8,10,13,17,23,33

EC7A

MOV R1 100
MOV R2 0
DIV R3 R1 R2
RET R3

2,6,8,12,13,17,27,33

EC7B

MOV R1 100
MOV R2 -1
DIV R3 R1 R2
RET R3

2,6,8,12,13,17,27,33

EC8

MOV R1 100
MOV R2 20
DIV R3 R1 R2

2,6,8,12,13,17,27,33

RET R3

EC9A

MOV R1 100
MOV R2 20
JMP -3

RET R3

2,6,8,13,15,17, 33,35

EC9B

MOV R1 100
MOV R2 20
JIMP -4

RET R3

1,2,6,8,613,15,17, 33,35

EC10

MOV R1 100
MOV R2 20
JMP 2

MOV R3 30
RET R2

2,6,8,13,15,17, 33,35

EC11

MOV R1 100
MOV R2 20
JMP 3

MOV R3 30
RET R2

3,6,8,13, 15,17, 33,35

EC12A

MOV R1 100
MOV R2 0
JZR2 -3

RET R1

2,6,8,13,14,17, 33,37,38

EC12B

MOV R1 100
MOV R2 0
JZR2 -4

1,2, 6,8,13,14,17, 33,37,38

EC13

MOV R1 100
MOV R2 0
ADD R3 R2R1
JZR21

RET R3

2,6,8,9,13,14,17, 21, 33,37,38

EC14

MOV R1 100
MOV R2 0
ADDR3 R2R1
JZR22

RET R3

2,3,6,8,9,13,14,17, 21, 33,37,38

EC15

MOV R1 100
MOV R2 5

2,6,8,13,14,17, 33,37,39

JZR2 -4
RET R1

EC16A | MOV R1 -65535 2,6,8,13,17,33
MOV R2 5
RET R1

EC16B | MOV R1 -65536 2,6,8,13,17,33
MOV R2 5
RET R1

EC17 | MOV R1 65535 2,6,8,13,17,33
MOV R2 5
RET R1

EC18 | MOV R1 65536 2,6,8,13,17,33
MOV R2 5
RET R1

EC19 | MOVR12 2,6,8,13,16,17,18, 29, 31, 33
MOV R2 100
STRR1-2 R2
LDR R4 R1 -2
RET R4

EC20A | MOV R1 88 2,6,8,13,16,17,18, 29, 31, 33
MOV R2 100
STR R1 -89 R2
LDR R4 R1 -89
RET R4

EC20B | MOV R15 2,6,8,13,16,17,18, 29, 31, 33
MOV R2 100
STR R1 65530 R2
LDR R4 R1 65530
RET R4

EC21 | MOVR13 2,6,8,13,16,17,18, 29, 31, 33
MOV R2 100
STR R1 65533 R2
LDR R4 R1 65533
RET R4

EC22 | MOV R1 -38 2,6,8,13,16,17,18, 29, 31, 33
MOV R2 100
STR R1 37 R2
LDR R4 R1 37
RET R4

EC23A | MOV R1 -90 2,6,8,13,16,17,18, 29, 31, 33
MOV R2 100
STR R1 90 R2
LDR R4 R1 90
RET R4

EC23B | MOV R1 65535 2,6,8,13,16,17,18, 29, 31, 33
MOV R2 100
STRR11R2
LDRR4R11
RET R4

EC24 | MOVR13 2,6,8,13,16,17,18, 29, 31, 33
MOV R2 100
STR R1 65532 R2
LDR R4 R1 65532
RET R4

EC25A | MOV R1 100 2,6,8,13,15,17, 33,35
MOV R2 20
JMP O
RET R3

EC25B | MOV R1 100 2,6,8,13,15,17, 33,35
MOV R2 20
JMP -1
RET R3

EC25C | MOV R1 100 2,6,8,13,15,17, 33,35
MOV R2 20
JMP 1
RET R1

Table 4.0 Multiple-condition coverage in boundary analysis

With boundary analysis, 12 conditions are not met. Same with equivalence partitioning,
objective 4 is logically not possible, and the rest conditions are not met because of
syntax correct assumption. In fact, the program code has some if conditions to
specifically check whether the length of the instruction syntax is correct or not. The
result of multiple-condition coverage in boundary analysis is similar with multiple-
condition coverage in equivalence partitioning because this coverage is only calculated
within execute method which not cover other if condition that some test cases in
boundary analysis could cover more (e.g validate offset, validate regs).

. . .27
Multiple-condition coverage result for boundary analysis : 39— 69 %

When it comes to check a program which specify a condition that has particular range
like this program, it is found that boundary analysis is more effective than equivalence
partitioning. Even though those two methods result in the same value for multiple-
condition coverage as this coverage is only calculated in one particular function, more
mutants can be killed with the test cases from boundary analysis instead of equivalence
partitioning. Each mutant also can be killed with more test cases in boundary analysis
rather than the test cases from from equivalence portioning. It is also supported with
the fact that input considered in equivalence partitioning could be more broaden, but
may not cover the off point and on point in the boundary analysis that could discover
more faulty in the program.

