
Software Testing and
Reliability

Semester 2, 2018

Contents
1 Test Template Tree 2

2 Task One - Equivalence Classes 5

3 Task Two - Equivalence Class Test Cases 5

4 Task Three - Boundary Value Analysis 5
4.1 Number of Line Inputs . 5
4.2 Valid Registers and Valid Values . 6
4.3 JMP/JZ and Program Counter . 6
4.4 Mathematical Operations and Register Values . 6
4.5 Reading and Writing . 7
4.6 Discrete Equivalence Classes . 7

5 Task Four - Boundary Value Analysis Test Suite 8

6 Task Five - Multiple Condition Coverage 8
6.1 Equivalence Partitioning . 9
6.2 Boundary Value Analysis . 11

7 Task Seven - Comparison 13
7.1 Input/Output Domain Coverage . 13
7.2 Multiple Condition Coverage . 13
7.3 Mutants . 13
7.4 Summary . 13

1

1 Test Template Tree

Figure 1: Test Template Tree Part 1

2

Figure 2: Test Template Tree Part 2

3

Figure 3: Test Template Tree Part 3

4

2 Task One - Equivalence Classes
As it is safely assumed that input programs will contain at least 1 line, we can decompose the valid input domain
into single and multiple line inputs. These new nodes are further decomposed in a similar fashion while taking
into consideration the possible values that may be taken and following the provided guidelines for equivalence
class partitioning. Consequently, the resulting set of equivalence classes cover the input domain.

3 Task Two - Equivalence Class Test Cases
The Equivalence Partitioning tests and their corresponding Test IDs are listed below, together with their
associated equivalence classes.

Test ID Test Name Equivalence Classes
1 singleLineValidInstruction EC3
2 overflowAdd2 EC19
3 validAdd EC20
4 overflowAdd1 EC21
5 overflowSub1 EC24
6 validSub EC23
7 overflowSub2 EC22
8 overflowMul1 EC27
9 validMul EC26
10 overflowMul2 EC25
11 validDiv EC29
12 invalidDiv EC31
13 blankLineComment EC35
14 earlyReturn EC40
15 validSTRLDR EC33, EC45
16 invalidSTRLDR1 EC34, EC46
17 invalidSTRLDR2 EC32, EC44
18 validMOV EC51
19 validJZ0 EC38
20 validJZ1 EC36
21 validJMP EC42
22 invalidJMP1 EC43
23 invalidJMP2 EC41
24 invalidJZ01 EC37
25 invalidJZ02 EC39
26 invalidRegister EC47
27 invalidVal1 EC49
28 invalidVal2 EC48
29 invalidInstruction EC50
30 noReturn EC15

Table 1: Equivalence Class Partitioning Test Suite

4 Task Three - Boundary Value Analysis

4.1 Number of Line Inputs
As the number of line inputs is defined by the input file, we can use the zero-one-many rule to decompose the
input domain. As mentioned above, it is assumed that the number of line inputs is greater than 0, so we can
consider empty input files as invalid, leaving input sizes of 1 and many remaining. We can determine that, from
the perspective of the single line input equivalence class, an input size of 1 is considered on point, and 2 is off
point.

5

No test cases have been directly derived from this as the test suite derived from other classes and boundaries
already contain tests that consider these on and off points for number of input lines.

4.2 Valid Registers and Valid Values
If the valid registers are considered to be a range from R0..R31, ’R31’ and ’R0’ would be on point, while ’R32’
and ’R-1’ are off point.

If a val is involved in the instruction, its valid domain is [-65535, 65535]. Thus, -65536 and 65536 are off
point, and -65535 and 65535 are on point.

The assumption has also been made that the validity of registers and values will be done in the same process
in both single and multiple line inputs, and as a result some of the derived test cases will only test the validity
within single line inputs.

The test cases derived from these will contain:

Derived Test Cases
1. RET R-1
2. RET R0
3. RET R31
4. RET R32
5. MOV R31 65535
6. MOV R31 65536
7. MOV R0 65535
8. MOV R0 -65535
9. MOV R32 65536
10. MOV R31 -65535
11. MOV R31 -65536
12. MOV R32 -65536

4.3 JMP/JZ and Program Counter
The program counter is restricted between 0 and N-1, where N is the number of lines of input. Thus -1 and N
are off point, and 0 and N-1 are on point.

For the instruction JZ to change the program counter, it requires a val of 0. As val can take values between
[-65535, 65535], 0 is considered on point, and -1 and 1 are considered off point.

The test cases derived from these will be:

Derived Test Cases
1. JMP to pc = 0
2. JMP to pc = -1
3. JMP to pc = N-1
4. JMP to pc = N
5. JZ 0 to pc = 0
6. JZ 0 to pc = -1
7. JZ 0 to pc = N-1
8. JZ 0 to pc = N
9. JZ -1 to pc = N-1
10. JZ 1 to pc = N-1

4.4 Mathematical Operations and Register Values
A register stores a 32-bit signed Java integer, meaning it can hold the value within [−231, 231). Thus, −231 and
231 − 1 are on point, while −231 − 1 and 231 are off point.

EC31, which handles divide by zero invalid operations, requires Rc to hold a value of 0. Thus, -1 and 1 are
off point, and 0 is on point for c.

6

The test cases derived from these will be:

Derived Test Cases
1. DIV Ra Rb Rc where c = 0
2. DIV Ra Rb Rc where c = 1
3. DIV Ra Rb Rc where c = -1
4. ADD Ra Rb Rc where b = 2147483646 and c= 1
5. ADD Ra Rb Rc where b = 2147483646 and c = 2
6. ADD Ra Rb Rc where b = -2147483646 and c = -2
7. ADD Ra Rb Rc where b = -2147483646 and c = -3
8. SUB Ra Rb Rc where b = 2147483646 and c = -1
9. SUB Ra Rb Rc where b = 2147483646 and c = -2
10. SUB Ra Rb Rc where b = -2147483646 and c = 2
11. SUB Ra Rb Rc where b = -2147483646 and c = 3
12. MUL Ra Rb Rc where b = 1073741823 and c = 2
12. MUL Ra Rb Rc where b = 1073741824 and c = 2
13. MUL Ra Rb Rc where b = -1073741824 and c = 2
14. MUL Ra Rb Rc where b = -1073741825 and c = 2

4.5 Reading and Writing
The address space is limited to values within [0, 65535]. Thus, 0 and 65535 are on point, and -1 and 65536 are
off point. The test cases derived from these will involve:

Derived Test Cases
1. STR Rb val Ra where b + v = -1 && LDR Ra Rb val where b + v = -1 (b = -1 val = 0)
2. STR Rb val Ra where b + v = -1 && LDR Ra Rb val where b + v = -1 (b = 0 val = -1)
3. STR Rb val Ra where b + v = 0 && LDR Ra Rb val where b + v = 0 (b = 0 val = 0)
4. STR Rb val Ra where b + v = 65535 && LDR Ra Rb val where b + v = 65535 (b = 65535 val = 0)
5. STR Rb val Ra where b + v = 65535 && LDR Ra Rb val where b + v = 65535 (b = 0 val = 65535)
6. STR Rb val Ra where b + v = 65536 && LDR Ra Rb val where b + v = 65536 (b = 65535 val = 1)
7. STR Rb val Ra where b + v = 65536 && LDR Ra Rb val where b + v = 65536 (b = 1 val = 65535)

4.6 Discrete Equivalence Classes
In addition to the specified on and off points above concerning ranges and other values, discrete equivalent
classes will be tested as well.

The test cases derived from these will involve:

Derived Test Cases
1. Empty lines and lines with only comments
2. Executing RET before final line in program
3. No RET in program
4. Invalid instruction (RAT R0)

7

5 Task Four - Boundary Value Analysis Test Suite

Test ID Tests Boundaries/Classes
1 invalidLowerRegister EC4, EC11, EC47
2 validRegister EC4, EC11, EC47
3 invalidHigherRegister EC4, EC11, EC47
4 validMov EC51, EC47, EC48, EC49
5 invalidMov1 EC51, EC49
6 invalidMov2 EC51, EC48
7 invalidMov3 EC51, EC49, EC47
8 invalidMov4 EC51, EC48, EC47
9 invalidInstruction EC50
10 validJMP EC42, EC41, EC43
11 invalidJMP1 EC42, EC41
12 invalidJMP2 EC42, EC43
13 validJZ EC36, EC38, EC37, EC39
14 invalidJZ1 EC38, EC37
15 invalidJZ2 EC38, EC39
16 validDiv EC29, EC31
17 validAdd EC20, EC19, EC21
18 overflowAdd1 EC20, EC21
19 overflowAdd2 EC20, EC19
20 validSub EC23, EC22, EC24
21 overflowSub1 EC23, EC24
22 overflowSub2 EC23, EC22
23 validMul EC26, EC25, EC27
24 overflowMul1 EC26, EC27
25 overflowMul2 EC26, EC25
26 validLDRSTR EC33, EC45, EC32, EC44, EC34, EC46
27 uppLDRSTR EC33, EC45, EC34, EC46
28 negLDRSTR EC33, EC45, EC32, EC44
29 earlyReturn EC40
30 blankLineComment EC35
31 noReturn EC15

Table 2: Boundary Value Test Suite

6 Task Five - Multiple Condition Coverage
The execute method contains:

• 1 if statement with 2 conditions

• 12 if statements with 1 condition

• 1 if-else chain with 11 different cases

From this we determine:

• 2 + 12 + 1 = 15 conditions

• 22 + 12 ∗ 2 + 11 = 39 condition permutations

8

Condition Branch Code Permutations
C1 || C2 pc <0 || pc >= progLength {00, 01, 10, 11}
C3 if (inst.equals(“”)) {0, 1}
C4 if (toks.length <2) {0, 1}
C5 If else chain beginning with:

if (toks[0].equals(INSTRUCTION_ADD))
{ADD, SUB, MUL, DIV, RET,
LDR, STR, MOV, JMP, JZ, de-
fault}

C6 (ADD) if (toks.length != 4) {0, 1}
C7 (SUB) if (toks.length != 4) {0, 1}
C8 (MUL) if (toks.length != 4) {0, 1}
C9 (DIV) if (toks.length != 4) {0, 1}
C10 (LDR) if (toks.length != 4) {0, 1}
C11 (STR) if (toks.length != 4) {0, 1}
C12 (MOV) if (toks.length != 3) {0, 1}
C13 (JMP) if (toks.length != 2) {0, 1}
C14 (JZ) if (toks.length != 3) {0, 1}
C15 (JZ) if (regs[ra] == 0) {0, 1}

Table 3: Multiple Condition Coverage Table for execute method

6.1 Equivalence Partitioning
As shown in Table 4 and 5, 11 out of 39 objectives were unmet. One of the objectives {C1,C2} = {11} is
impossible to meet - the program counter cannot be simultaneously larger than or equal to progLength (number
of lines in the program), and be less than 0, as progLength cannot take negative values.

The remaining unmet objectives relate to the syntax of the grammar of the provided instructions. As it was
assumed that the provided programs would be syntactically correct, the chosen test cases do not account for
these token length conditions.

The multiple condition coverage can be calculated with:

Number of Unmet Objectives

Total Number of Objectives
=

28

39
= 72%

9

Test
ID

{C1, C2} C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

1 {00}{01} 0 0 MOV 0
2 {00} 0 0 MOV, ADD,

MUL, RET
0 0 0

3 {00} 0 0 MOV, ADD,
RET

0 0

4 {00} 0 0 MOV, MUL,
ADD, RET

0 0 0

5 {00} 0 0 MOV, MUL,
SUB, RET

0 0 0

6 {00} 0 0 MOV, MUL,
SUB, RET

0 0 0

7 {00} 0 0 MOV, MUL,
SUB, RET

0 0 0

8 {00} 0 0 MOV, MUL,
ADD, RET

0 0 0

9 {00} 0 0 MOV, MUL,
RET

0 0

10 {00} 0 0 MOV, MUL,
SUB, RET

0 0 0

11 {00} 0 0 MOV, DIV,
RET

0 0

12 {00} 0, 1 0 MOV, DIV,
RET

0 0

13 {00} 1 0 MOV, RET 0
14 {00} 0 0 MOV, ADD,

RET
0 0

15 {00} 0, 1 0 MOV, SUB,
JZ, STR,
ADD, JMP,
LDR, RET

0 0 0 0 0 0 0 0,1

16 {00} 0 0 MOV, STR,
LDR, RET

0 0 0

17 {00} 0 0 MOV, STR,
LDR, RET

0 0 0

18 {00} 0 0 MOV, RET 0
19 {00} 0 0 MOV, JZ,

RET
0 0 1

20 {00} 0 0 MOV, JZ,
RET

0 0 0

21 {00} 0 0 MOV, JMP,
RET

0 0

22 {00}{01} 0 0 MOV, JMP,
RET

0 0

23 {00}{10} 0 0 MOV, JMP,
RET

0 0

24 {00}{10} 0 0 MOV, JZ,
RET

0 0 1

25 {00}{01} 0 0 MOV, JZ,
RET

0 0 1

26 {00} 0 0 MOV 0
27 {00} 0 0 MOV 0
28 {00} 0 0 MOV 0
29 {00} 0 0 MOV, de-

fault
0

30 {00} {01} 0 0 MOV, ADD 0 0

Table 4: Equivalence Partitioning Multiple Condition Coverage10

Condition {C1C2} C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
Seen {00},

{01},
{10}

0, 1 0 MOV,
ADD,
SUB,
MUL,
DIV,
LDR,
STR,
RET,
JMP,
JZ,
de-
fault

0 0 0 0 0 0 0 0 0 0,1

Missing {11} 1 1 1 1 1 1 1 1 1 1

Table 5: Equivalence Partitioning Multiple Condition Coverage Objectives

6.2 Boundary Value Analysis
As demonstrated in Table 6 and 7, 11 out of 39 objectives were unmet. One of the objectives {C1,C2} = {11} is
impossible to meet - the program counter cannot be simultaneously larger than or equal to progLength (number
of lines in the program), and be less than 0, as progLength cannot take negative values.

The remaining unmet objectives relate to the syntax of the grammar of the provided instructions. As it was
assumed that the provided programs would be syntactically correct, the chosen test cases do not account for
these token length conditions.

The multiple condition coverage can be calculated with:

Number of Unmet Objectives

Total Number of Objectives
=

28

39
= 72%

11

Test
ID

{C1, C2} C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

1 {00} 0 0 RET
2 {00} 0 0 RET
3 {00} 0 0 RET
4 {00} 0 0 MOV, RET 0
5 {00} 0 0 MOV, RET 0
6 {00} 0 0 MOV, RET 0
7 {00} 0 0 MOV, RET 0
8 {00} 0 0 MOV, RET 0
9 {00} 0 0 default
10 {00} 0 0 MOV,

JZ,JMP,
RET

0 0 0 0, 1

11 {00}{10} 0 0 MOV, JZ,
JMP

0 0 0 1

12 {00}{01} 0 0 JMP 0
13 {00} 0 0 JZ, MOV,

RET
0 0 0, 1

14 {00}{10} 0 0 JZ, MOV 0 0 1
15 {00}{01} 0 0 JZ 0 1
16 {00} 0 0 MOV, DIV,

RET
0 0

17 {00} 0 0 MOV, MUL,
ADD, RET

0 0 0

18 {00} 0 0 MOV, MUL,
ADD, RET

0 0 0

19 {00} 0 0 MOV, MUL,
ADD, RET

0 0 0

20 {00} 0 0 MOV, MUL,
SUB, RET

0 0 0

21 {00} 0 0 MOV, MUL,
SUB, RET

0 0 0

22 {00} 0 0 MOV, MUL,
SUB, RET

0 0 0

23 {00} 0 0 MOV, MUL,
RET

0 0

24 {00} 0 0 MOV, MUL,
ADD, RET

0 0 0

25 {00} 0 0 MOV, MUL,
SUB, RET

0 0 0

26 {00} 0 0 MOV, STR,
LDR, RET

0 0 0

27 {00} 0 0 MOV, ADD,
STR, LDR,
RET

0 0 0 0

28 {00} 0 0 MOV, STR,
LDR, RET

0 0 0

29 {00} 0 0 MOV, ADD,
RET

0 0

30 {00} 0, 1 0 MOV, RET 0
31 {00}{01} 0 0 MOV, ADD 0 0

Table 6: Boundary Value Analysis Multiple Condition Coverage

12

Condition {C1C2} C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
Seen {00},

{01},
{10}

0, 1 0 MOV,
ADD,
SUB,
MUL,
DIV,
LDR,
STR,
RET,
JMP,
JZ,
de-
fault

0 0 0 0 0 0 0 0 0 0,1

Missing {11} 1 1 1 1 1 1 1 1 1 1

Table 7: Boundary Value Analysis Multiple Condition Coverage Objectives

7 Task Seven - Comparison

7.1 Input/Output Domain Coverage
As both equivalence partitioning and boundary value analysis are derived from equivalence classes, both tech-
niques represent the input domain in a very similar fashion. As long as the derived equivalence classes are
disjoint and span the input domain, the resulting input domain coverage for the two sets of test cases should
be adequate.

7.2 Multiple Condition Coverage
The resulting multiple condition coverage for both sets of test cases were the same - 72%. As the remaining unmet
objectives were either impossible, or not considered within the scope of our assumed inputs, we can observe that
both equivalence partitioning and boundary value analysis performed quite well under this particular metric.

7.3 Mutants
Due to the nature of how mutants are generated, boundary value analysis outperforms equivalence partitioning
in this regard. Mutations which modify constants or inequalities by small amounts are much more likely to
be caught through boundary value analysis, rather than equivalence partitioning, which treats all inputs in a
particular equivalence class as equally as valuable. These types of mutations are also representative of some of
the more common errors that programmers can find themselves making.

Additionally, as the technique of utilising on and off points to derive test cases are still based upon the
original equivalence classes, the benefits of using equivalence partitioning are not lost from using boundary
value analysis.

7.4 Summary
Based on these evaluation metrics and results, it was determined that boundary value analysis was more valuable
when compared to equivalence partitioning. Rather than two entirely separate techniques of deriving a set of
test cases, boundary value analysis can be considered to be an extension of equivalence partitioning. Although
the resulting tests may be more complicated to create, based on its performance on my own generated mutants,
boundary value analysis provides a more sophisticated set of test cases.

13

