
The University of Melbourne

SWEN90006: Software Testing and Reliability

Assignment 1

Second Semester, 2019

Due Date: 18:00pm, Friday, 6 September, 2019

Introduction

The �rst assignment deals with input partitioning, boundary-value analysis, and control-�ow
testing. You are given a speci�cation and a program that implements that speci�cation. The
aim of this assignment is to test the program using the di�erent techniques, and to analyse the
di�erence between them.

You are expected to derive and compare test cases, but you are not expected to debug the
program.

The assignment is part laboratory exercise because you are expected to write a JUnit driver
program to run your test cases automatically. Some exploration may be needed here. The
assignment is also part analysis exercise as you are expected to apply the testing techniques to
derive your test cases, and to compare them. Finally, the assignment is also part competition,
as your solutions to various tasks will be evaluated against all other submissions to measure its
e�ectiveness and completeness.

The assignment is worth 20% of your �nal mark.

Description: PassBook

PassBook is a (�ctional) online password manager. A password manager is a software application
that generates, stores, and retrieves login details for users.

A user has an account with PassBook. This account is protected by a master password, or
passphrase. Each user can store login details for multiple websites, identi�ed by their URL. A
user can add a login details for a given website. The passphrase is used to encrypt all passwords,
but for this implementation, we have ignored encryption.

An API speci�cation is available in the source �le (see below).

Source code

To obtain the source for the program, fork the repository at:

https://gitlab.eng.unimelb.edu.au/tmiller/swen90006-a1-2019.git

You will have an account created on https://gitlab.eng.unimelb.edu.au/ that uses your
University of Melbourne login details.

1

https://gitlab.eng.unimelb.edu.au/tmiller/swen90006-a1-2019.git
https://gitlab.eng.unimelb.edu.au/


Documentation for how to fork, pull, push, merge etc. is available from the Gitlab site: https:
//gitlab.eng.unimelb.edu.au/help/user/index.md.

NOTE: If you �nd any functional faults in the implementation, please let us know via the
discussion board. We will correct the fault and ask that everyone pull changes. There are not
intended to be faults in the implementation, but software engineering is hard!

Building and Running the Program

The source code has been successfully built and tested on JDK 1.12 but should also work with
some earlier versions of Java.

The �le build.xml contains an Ant build script, should you choose to use it. The README.md
�le in the top-level folder has instructions for using this.

There are two JUnit test scripts in test/swen90006/passbook. You will need to modify each of
these to complete the tasks below. You can run these by compiling and running as a class, but
you will need to include the library �les in the lib/ directory.

Tasks and Questions

Task 1

Using the speci�cation, apply equivalence partitioning to derive equivalence classes for the fol-
lowing methods in the API: addUser, loginUser, updateDetails, and retrieveDetails.

Document your equivalence partitioning process for each method using only test template trees,
listing the assumptions that you make (if any). You should have four tree: one for each method.
You will be marked only on your test template trees, so ensure that they are clear and concise.

You can omit some nodes to improve readability, provided that it is clear what you intend. For
example, in tutorial 2, if I wanted to test all 12 months of the year, I would create nodes for
JAN and DEC, and then use �. . . � in between them to represent the other months.

Note that as part of your input domain, you will have to consider the instance variables. These
are not parameters to any of the methods, but they are inputs.

Do your set of equivalence classes cover the input space? Justify your claim.

Task 2

Select test cases associated with your equivalence classes, and implement these in the JUnit test
driver named tests/Partitioning/swen90006/passbook/PartitioningTests.java. Use JU-
nit test method for each equivalence class. For each test, clearly identify from which equivalence
class it has been selected.

NOTE: As you will �nd, when implementing tests for one method, you may need to use other
methods to check that the �rst method has worked as expected.

2

https://gitlab.eng.unimelb.edu.au/help/user/index.md
https://gitlab.eng.unimelb.edu.au/help/user/index.md


Task 3

Conduct a boundary-value analysis for your equivalence classes. Show your working for this.
Select test cases associated with your boundary values.

Task 4

Implement your boundary-value tests in the JUnit test driver called
test/Boundary/swen90006/passbook/BoundaryTests.java.

Note that you can extend/inherit from the JUnit script for your partitioning tests, which will
include all tests from the parent class. A JUnit test is just a standard public Java class!

Task 5

Calculate the coverage score of your two test suites (equivalence partitioning and boundary-value
analysis) using multiple-condition coverage each of the four of the methods. You should have
eight coverage scores: partitioning and boundary scores for each of the four methods.

Show your working for this coverage calculation in a table that lists each test objective (that is,
each combination for multiple-condition coverage) and one test that achives this, if any.

You will receive marks for deriving correct coverage scores and showing how you come to this
score. You will not receive any marks for having a higher coverage score. If you think your tests
are good but do not cover some points, there is no need to add new tests to cover these (note
the score calculation below for the competition explicitly penalises larger test suites). The task
is testing your knowledge and ability to apply coverage concepts, not to improve the test suite.

NOTE: You do NOT need to draw the control-�ow graph for your solution.

Task 6

Derive �ve non-equivalent mutants for the PassBook class using the mutation opera-
tors in the notes, and that you believe will be di�cult to �nd using testing. In-
sert each of these mutants into the �les programs/mutant-1/swen90006/passbook/,
programs/mutant-2/swen90006/passbook/, etc.

It is important that these mutants are both non-equivalent AND that each mutant is killed by
at least one test in your JUnit script to demonstrate that they are non-equivalent.

Importantly, do not change anything else about the mutant �les except for inserting the mutant.

Question 7

Compare the two sets of test cases (equivalence partitiong and boundary-value analysis) and
their results. Which method did you �nd was more e�ective and why? You should consider
the coverage of the valid input/output domain, the coverage achieved, and the mutants it kills.
Limit your comparison to half a page. If your comparison is over half a page, you will be marked
only on the �rst half page.

3



Marking criteria

As part of our marking, we will run your boundary-value analysis JUnit scripts on everyone else's
mutants. You will receive marks for killing other mutants as well as for deriving mutants that
are hard to kill. This will contribute 5 marks to the total.

Criterion Description Marks

Equivalence parti-
tioning

Clear evidence that partitioning the input space to �nd
equivalence classes has been done systematically and cor-
rectly. Resulting equivalence classes are disjoint and cover
the appropriate input space

7

Boundary-value
analysis

Clear evidence that boundary-value analysis has been ap-
plied systematically and correctly, and all boundaries, in-
cluding on/o� points, have been identi�ed

3

Control-�ow analy-
sis

Clear evidence that measurement of the control-�ow cri-
terion has been done systematically and correctly

2

There is a clear and succinct justi�cation/documentation
of which test covers each objective

2

Discussion Clear demonstration of understanding of the topics used
in the assignment, presented in a logical manner

1

JUnit tests JUnit scripts implement the equivalence partitioning and
boundary-value tests, and �nd many mutants

2.5

Mutants Selected mutants are valid mutants and are di�cult to �nd
using tests

2.5

Total 20

For the JUnit tests, the score for these will be calculated using the following formula:

junit_score =
k
T

ln(N) + 10

in which N is the number of tests in your test suite, k is the number of mutants that your test
suite kills, and T is the maximum number of mutants killed by any other JUnit test suite1.
The entire pool of mutants are the mutants from all other submissions. Therefore, your score is
the mutant score, divided by ln(N) + 10, which incentivises smaller test suites2. The maximum
possible score is 0.1, scaled to be out of 2.5.

For the mutants, the score is:

mutant_score =

∑M
i

∑N
j ai,j

T

in which M is the total number of your mutants, N is the total number of other people's test
suites, ai,j = 1 if mutant i is still alive after executing test suite j, and T ≤ M +N is the highest

1This ensures that equivalent mutants are not counted.
2This incentive is to resist the urge to submit a test suite of thousands of tests with the hope of increasing the

score.

4



number of mutants still alive by any student in the class. This is then scaled to be out of 2.5.
Therefore, your score is the inverse of the mutant score of all other students' test suites on your
mutants, which incentivises you to submit hard-to-�nd mutants, while T normalises the score to
ensure that everyone is rewarded for good mutants.

Important note: We determine that a mutant is found when JUnit contains a failed test.
Because of this, if a JUnit fails a test when applied to the original source code, it will fail on
everyone else's mutants, giving people a 100% score. As such, JUnit suites that fail on the

original source code emulator will be disquali�ed from the tournament. As noted above, if you
�nd any faults in the original source code, please let us know via the discussion board.

Submission

For the JUnit test scripts, we will clone everyone's Gitlab repository at the due time. We will
mark the latest version on the master branch of the repository. To have any late submissions
marked, please email Tim (tmiller@unimelb.edu.au) to let him know to pull changes from your
repository.

Some important instructions:

1. Do NOT change the package names in any of the �les.

2. Do NOT change the directory structure.

3. In short: you should be able to complete the assignment without adding any new source
�les.

JUnit scripts will be batch run automatically, so any script that does not follow the instructions
will not run and will not be awarded any marks.

The remainder of the assignment (test template tree, boundary-value analysis working, coverage,
and discussion) submit a PDF �le using the Turnitin links on the subject LMS. Go to the
SWEN90006 LMS page, select Assessment from the subject menu.

Setting Out Your Solution

In the git repository, there are three sample solutions from last year's assignment, which you can
use for ideas on how to set out your solution.

Note that these three sample solutions are submissions made by class members of SWEN90006.
They are examples of what the sta� think are good ways to set out answers. This does not mean
that they are free from error. In particular, they all have more information than is necessary to
get full marks for this. Please resist the temptation to just trying to map your solution one this.
The assignment was very di�erent, and moreso, these were NOT the solutions with the highest
marks.

Tips

Some tips to managing the assignment, in particular, the equivalence partitioning:

5

tmiller@unimelb.edu.au


1. Ensure that you understand the notes before diving into the assignment. Trying to learn
equivalence partitioning or boundary-value analysis on a system this size is di�cult.

2. Keep it simple: don't focus on what you think we want to see � focus on looking for good
tests and then documenting them.

3. Focus on the requirements: as with any testing e�ort, focus your testing on the require-
ments, NOT on demonstrating the theory from the notes. If you are worrying about
whether to apply a particular part of the theory, look at whether it tests one of the re-
quirements. If not, it is probably not useful.

4. If you cannot �gure out how to start your test template tree, simple start listing tests that
you think are important. Once you have a list, think about putting them into a tree.

Academic Misconduct

The University misconduct policy3 applies. Students are encouraged to discuss the assignment
topic, but all submitted work must represent the individual's understanding of the topic.

The subject sta� take academic misconduct very seriously. In this subject in the past, we have
successfully prosecuted several students that have breached the university policy. Often this
results in receiving 0 marks for the assessment, and in some cases, has resulted in failure of the
subject.

3See https://academichonesty.unimelb.edu.au/

6

https://academichonesty.unimelb.edu.au/

