Skip to content
Snippets Groups Projects
Select Git revision
  • b09130b92e71a98dccc0a5c399ae33435fe2579c
  • master default protected
2 results

testtwo.crt

Blame
  • sha256.c 5.14 KiB
    #include "sha256.h"
    
    
    /*********************************************************************
    * Filename:   sha256.c
    * Author:     Brad Conte (brad AT bradconte.com)
    * Copyright:
    * Disclaimer: This code is presented "as is" without any guarantees.
    * Details:    Implementation of the SHA-256 hashing algorithm.
                  SHA-256 is one of the three algorithms in the SHA2
                  specification. The others, SHA-384 and SHA-512, are not
                  offered in this implementation.
                  Algorithm specification can be found here:
                   * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
                  This implementation uses little endian byte order.
    *********************************************************************/
    
    /*************************** HEADER FILES ***************************/
    #include <stdlib.h>
    #include <memory.h>
    
    /****************************** MACROS ******************************/
    #define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
    #define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
    
    #define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
    #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
    #define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
    #define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
    #define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
    #define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
    
    /**************************** VARIABLES *****************************/
    static const WORD k[64] = {
    	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
    	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
    	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
    	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
    	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
    	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
    	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
    	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
    };
    
    /*********************** FUNCTION DEFINITIONS ***********************/
    void sha256_transform(SHA256_CTX *ctx, const BYTE data[])
    {
    	WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
    
    	for (i = 0, j = 0; i < 16; ++i, j += 4)
    		m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
    	for ( ; i < 64; ++i)
    		m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
    
    	a = ctx->state[0];
    	b = ctx->state[1];
    	c = ctx->state[2];
    	d = ctx->state[3];
    	e = ctx->state[4];
    	f = ctx->state[5];
    	g = ctx->state[6];
    	h = ctx->state[7];
    
    	for (i = 0; i < 64; ++i) {
    		t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
    		t2 = EP0(a) + MAJ(a,b,c);
    		h = g;
    		g = f;
    		f = e;
    		e = d + t1;
    		d = c;
    		c = b;
    		b = a;
    		a = t1 + t2;
    	}
    
    	ctx->state[0] += a;
    	ctx->state[1] += b;
    	ctx->state[2] += c;
    	ctx->state[3] += d;
    	ctx->state[4] += e;
    	ctx->state[5] += f;
    	ctx->state[6] += g;
    	ctx->state[7] += h;
    }
    
    void sha256_init(SHA256_CTX *ctx)
    {
    	ctx->datalen = 0;
    	ctx->bitlen = 0;
    	ctx->state[0] = 0x6a09e667;
    	ctx->state[1] = 0xbb67ae85;
    	ctx->state[2] = 0x3c6ef372;
    	ctx->state[3] = 0xa54ff53a;
    	ctx->state[4] = 0x510e527f;
    	ctx->state[5] = 0x9b05688c;
    	ctx->state[6] = 0x1f83d9ab;
    	ctx->state[7] = 0x5be0cd19;
    }
    
    void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len)
    {
    	WORD i;
    
    	for (i = 0; i < len; ++i) {
    		ctx->data[ctx->datalen] = data[i];
    		ctx->datalen++;
    		if (ctx->datalen == 64) {
    			sha256_transform(ctx, ctx->data);
    			ctx->bitlen += 512;
    			ctx->datalen = 0;
    		}
    	}
    }
    
    void sha256_final(SHA256_CTX *ctx, BYTE hash[])
    {
    	WORD i;
    
    	i = ctx->datalen;
    
    	// Pad whatever data is left in the buffer.
    	if (ctx->datalen < 56) {
    		ctx->data[i++] = 0x80;
    		while (i < 56)
    			ctx->data[i++] = 0x00;
    	}
    	else {
    		ctx->data[i++] = 0x80;
    		while (i < 64)
    			ctx->data[i++] = 0x00;
    		sha256_transform(ctx, ctx->data);
    		memset(ctx->data, 0, 56);
    	}
    
    	// Append to the padding the total message's length in bits and transform.
    	ctx->bitlen += ctx->datalen * 8;
    	ctx->data[63] = ctx->bitlen;
    	ctx->data[62] = ctx->bitlen >> 8;
    	ctx->data[61] = ctx->bitlen >> 16;
    	ctx->data[60] = ctx->bitlen >> 24;
    	ctx->data[59] = ctx->bitlen >> 32;
    	ctx->data[58] = ctx->bitlen >> 40;
    	ctx->data[57] = ctx->bitlen >> 48;
    	ctx->data[56] = ctx->bitlen >> 56;
    	sha256_transform(ctx, ctx->data);
    
    	// Since this implementation uses little endian byte ordering and SHA uses big endian,
    	// reverse all the bytes when copying the final state to the output hash.
    	for (i = 0; i < 4; ++i) {
    		hash[i]      = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
    		hash[i + 4]  = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
    		hash[i + 8]  = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
    		hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
    		hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
    		hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
    		hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
    		hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
    	}
    }