diff --git a/average_health_Victoria.py b/average_health_Victoria.py
new file mode 100644
index 0000000000000000000000000000000000000000..022bbb4c7b27ce788d469f2d4c08a34347c20cda
--- /dev/null
+++ b/average_health_Victoria.py
@@ -0,0 +1,87 @@
+#!/usr/bin/env python
+# coding: utf-8
+
+# In[39]:
+
+
+import pandas as pd
+import matplotlib.pyplot as plt
+from statistics import mean
+import numpy as np
+
+
+# In[4]:
+
+
+health = pd.read_csv('LGA_by_HEALTH.csv')
+
+
+# In[63]:
+
+
+#average the health issues across Victoria
+average_health_issues = {'smokers': health['smokers'].mean(),
+                         'heart_disease': health['heart_disease'].mean(),
+                         'pre_obese': health['pre_obese'].mean(),
+                         'obese': health['obese'].mean()
+                        }
+average_health_victoria= pd.Series(average_health_issues)
+average_health_victoria.index.name = 'Health_factor'
+
+
+# In[33]:
+
+
+#pm10 average added to health
+pm10 = pd.read_csv('PM10_AV_READING.csv')
+health['pm10'] = pm10['value']
+health.set_index('LGA_CODE_2011')
+
+
+# In[52]:
+
+
+#correlation between pm10 and smokers
+correlation_smokers = np.corrcoef(health['smokers'], health['pm10'])
+#correlation between pm10 and obesity
+correlation_obese = np.corrcoef(health['obese'], health['pm10'])
+#correlation between pm10 and heart_disease
+correlation_heart_disease = np.corrcoef(health['heart_disease'], health['pm10'])
+#correlation between pm10 and pre obese
+correlation_pre_obese = np.corrcoef(health['pre_obese'], health['pm10'])
+
+
+# In[67]:
+
+
+cor_obese=correlation_obese[1][0]
+cor_heart_disease=correlation_heart_disease[1][0]
+cor_pre_obese=correlation_pre_obese[1][0]
+cor_smokers=correlation_smokers[1][0]
+
+
+# In[62]:
+
+
+correlations_pm10 = {'smokers': cor_smokers,
+                     'heart_disease': cor_heart_disease,
+                     'pre_obese': cor_pre_obese,
+                     'obese': cor_obese
+                    }
+correlations_pm10 = pd.Series(correlations_pm10)
+correlations_pm10.index.name='Health_factor'
+
+
+# In[70]:
+
+
+Victoria = pd.DataFrame({'Average': average_health_victoria, 
+                        'Correlation_pm10':correlations_pm10})
+Victoria
+
+
+# In[72]:
+
+
+Victoria.to_csv('health_average_correlation_pm10', index = True)
+