diff --git a/2016_1HR.csv b/2016_1HR.csv index 402efc6e8fad876df01ca04b088a32654de8d2f4..29f45c883e2a30329aaceba504a3e49918be2ec8 100644 --- a/2016_1HR.csv +++ b/2016_1HR.csv @@ -1,3 +1,4 @@ +sp_name,sample_datetime,time_basis_id,value Alphington,01-01-16 0:00,1HR_AV,22.79999924 Alphington,01-01-16 1:00,1HR_AV,26.39999962 Alphington,01-01-16 2:00,1HR_AV,22.60000038 diff --git a/2016_AV_READING.csv b/2016_AV_READING.csv new file mode 100644 index 0000000000000000000000000000000000000000..36eb0a4586259a16d77617a394d59891afbd2b04 --- /dev/null +++ b/2016_AV_READING.csv @@ -0,0 +1,9 @@ +sp_name,value +Alphington,14.423692019423688 +Brooklyn,20.259909177105143 +Dandenong,15.554988189340063 +Footscray,15.077387055742498 +Geelong South,17.114088090521765 +Mooroolbark,13.03298071988639 +Richmond,16.088718474207894 +Traralgon,13.789331489934671 diff --git a/2016_MAX_1HR_READING.csv b/2016_MAX_1HR_READING.csv new file mode 100644 index 0000000000000000000000000000000000000000..95d35b43d7f7e27b69c95a030db502782f4d798c --- /dev/null +++ b/2016_MAX_1HR_READING.csv @@ -0,0 +1,9 @@ +sp_name,value +Alphington,310.5 +Brooklyn,292.8999939 +Dandenong,189.8999939 +Footscray,180.5 +Geelong South,919.0999756 +Mooroolbark,304.1000061 +Richmond,336.2000122 +Traralgon,120.0999985 diff --git a/2016_MAX_24HR_READING.csv b/2016_MAX_24HR_READING.csv new file mode 100644 index 0000000000000000000000000000000000000000..dbd0bb82c6d47406329b13bdeaa0333a0e6326ef --- /dev/null +++ b/2016_MAX_24HR_READING.csv @@ -0,0 +1,9 @@ +sp_name,value +Alphington,37.87500011879167 +Brooklyn,82.41250022125 +Dandenong,40.941667120000005 +Footscray,42.65833330041665 +Geelong South,68.35000076016667 +Mooroolbark,44.6833333975 +Richmond,35.79583295166666 +Traralgon,49.191666285416666 diff --git a/ovi.py b/ovi.py new file mode 100644 index 0000000000000000000000000000000000000000..84d2632a0b644cde1e603015fbfcf8bc4826fa03 --- /dev/null +++ b/ovi.py @@ -0,0 +1,28 @@ +import pandas as pandas + +air_quality_readings = pandas.read_csv("2016_1HR.csv", dtype="str", low_memory=False) +def time_to_iso8601(old): + #01-01-16 0:00 to 2016-01-01T00:00 + parts = old.split(" ") + old_date = parts[0] + new_date = "20" + old_date[6:8] + "-" + old_date[3:5] + "-" + old_date[0:2] + old_time = parts[1] + time = new_date + "T" + old_time.zfill(5) + return time + +air_quality_readings["sample_datetime"] = air_quality_readings["sample_datetime"].apply(time_to_iso8601) +air_quality_readings = air_quality_readings.drop("time_basis_id", axis=1) + +air_quality_readings = air_quality_readings.sort_values(['sp_name', 'sample_datetime']) +air_quality_readings['sample_datetime'] = pandas.to_datetime(air_quality_readings['sample_datetime'], format = "%Y-%m-%dT%H:%M") +air_quality_readings['value'] = air_quality_readings['value'].astype(float) +air_quality_readings = air_quality_readings.set_index(["sample_datetime"]) +max_readings = air_quality_readings.groupby(['sp_name']).max() + +max_readings.to_csv(path_or_buf = "2016_MAX_1HR_READING.csv") + +max_24HR = air_quality_readings.groupby(["sp_name"]).resample("D").mean().groupby(["sp_name"]).max() +max_24HR.to_csv(path_or_buf = "2016_MAX_24HR_READING.csv") + +average = air_quality_readings.groupby(["sp_name"]).mean() +average.to_csv(path_or_buf = "2016_AV_READING.csv") \ No newline at end of file