Workshop 04 Team 04

Charge Display:

A Class called CostCalculator is created. It calculates the charge of a delivery including service cost and
activity costs, the markup percentage and the activity cost per unit is configurable using different creators or setters if
needed in future.

CostCalculator is a static object in Simulation class initialized; upon a successful delivery, the function
ReportDelivery(Mailltem) is called in Simulation. The costCalculator functions then can be called within Simulation.
The CostCalculator then takes the Mailltem as input, and calculates the costs using the formula given in project spec.
If the CHARGE DISPLAY== true, the output now includes the costs,else the system prints the original outputs.

The class is created for the purpose of high cohesion, the class is focused on calculating the costs of
delivery, thus avoiding assigning more responsibility to different classes, which enhances understanding of the
code.CostCalculator does not originally exist, and in order to maintain low coupling and high cohesion, the class is
fabricated regarding to the GRASP pure fabrication and it does not change the structure of the original code, it
calculates the costs, and returns the costs only.

Charge Threshold:

In order to implement the priority delivering if the expected costs exceeds the charge threshold. The
MailPool class now has a new static attribute CostCalculaor,a new static double attribute CHARGE THRESHOLD,
both is passed on from Simulation by calling their setter functions.

To keep track of the expected cost of a mailitem, the expectedCost is now a double attribute of the class
Mailltem, default at 0. The expected cost is calculated when a Mailitem is added to the pool (using the function
addToPool(Mailltem mailltem)) using the costCalculator and stores it in Mailltem.expectedCost. Since the MailPool is
sorted everytime a new mailitem enters the pool using a Comparator<ltem>, by editing the comparator function, the
item that exceeds the charge threshold can be thrown to the front of the pool. In the comparator function, When the
CHARGE THRESHOLD is above 0, it checks both mailitem’s expected costs, if mailitem is expectedCharge exceeds
the CHARGE THRESHOLD , that item should be in front of the pool, thus returns (smaller), if both exceeds or not
exceeds the expected cost, the items are compared as original manner.

This way of implementing the priority function adheres to the original structure of the code, minimal changes
were made,and it only turns on if ChargeThreshold is > 0;.

Statistics Tracking:

Since the required statistics relate to deliveries, and the CostCalculator class has access to the relevant
information, the statistics are attributes of the CostCalculator class. At the start of the simulation the statistics will
have a default value (0) and are updated as deliveries are made.

Each time cost is calculated upon delivery, each statistic value is modified accordingly. With the exception of
the number of lookups, all of the statistics are able to be modified correctly from information that CostCalculator
already has. In the case of number of lookups, the number of attempts for lookups and failed lookups are retrieved
from the wifi log.

The statistics are stored as attributes in the CostCalculator class in accordance with the high cohesion, low
coupling GRASP principle. The CostCalculator class’ purpose is to perform relevant calculations as items are
delivered. The main calculation is of course the cost of individual deliveries, but making auxiliary calculations such as
the running statistics relevant to deliveries and costs are still in line with the class’ purpose. Low coupling is achieved
as almost all of the required information for the statistics is already available to the CostCalculator class, and it is only
dependent on the wifi log to look up values for the number of lookups statistics.

In a similar vein, the principle of information expert also informed the decision to store the statistics in the
CostCalculator class, as the required information for those statistics is already available there.

The fact that a fabricated class exists to keep track of relevant statistics means that it is easy to modify the
formulas for the current statistics, or easily add in more statistics in future. The stattrak functionality can be turned on
or off by editing the automail.properties, simply by setting StatTrack=true or false.



