COMP30023 Project 2 — Password cracker

Worth 15% of the final mark
Due: 24 May, 2019.

1 Background

A security system is only as strong as the passwords that unlock it.

In this project, you will try to crack the passwords of a simple system that has four- and
six-character passwords. The passwords can contain any ASCII character from 32 (space) to
126 (~), but since the passwords are chosen by people, they are not arbitrary strings. You will
use your knowledge of common human frailties to identify the passwords used by a particular user.

This system is particularly insecure because it will accept any of the thirty previous passwords
of the user. Your goal is to write code to guess as many of these as possible.

Submission will be through git, like the first project.

2 Project specification

For each student, 30 passwords have been generated and SHA256 hashes of these have been
computed. Passwords 1 to 10 are all four characters. Use scp to download the file pwd4sha256
from 172.26.37.44. This file contains 320 bytes. The first 32 bytes are the SHA256 hash of password
1, the second 32 bytes are the hash of password 2 etc.. Hashes 11 to 30 are for six character
passwords, and can be obtained using an extension described below.

You are to write a C program to guess the passwords. That is, find the four- or six-character
sequences whose SHA256 hash is one of the hashes you have downloaded.

You should create a Makefile that produces an executable named ‘crack’.

e If crack is run with no arguments, it should generate guesses, and test them against the
SHA256 hashes. When it finds one, it should print one line, consisting of the plaintext
password, a space, and an integer 1-30 indicating which hash it matches. For example

abed 3
Oops 5
adam 1
passwd 15

This is probably the mode you will use for finding passwords. The other two modes are only
for the assessment.

e If crack is run with one integer argument, the argument specifies how many guesses it should
produce. In this mode, password guesses should be printed to stdout, separated by newline
characters (‘\n’).

e If crack is run with two argument, it should treat the first as the filename of a list of
passwords (one per line), and the second as the filename of a list of SHA256 hashes (in
groups of 32 bytes, with no newline characters). It should then test each of the passwords
given in the first file against each of the hashes given in the second file, and produce output
as for the case of no arguments. It should print nothing else to stdout. If you want to
produce other output, send it to stderr.

This option does not need to generate any guesses.

A library for SHA256 is provided at
[https://gitlab.eng.unimelb.edu.au/junhaog/comp30023-labcode-current| in directory proj-2.

Write your code so that it is easy to change the number of hash values available to you. For
example, just read the whole file, and count how many 32-byte blocks it contains.

2.1 Suggestions for guesses

Part of the challenge in this project is teaching yourself about the types of weak password people
choose. To help you, a list of around 10,000 common passwords is available in
[https://gitlab.eng.unimelb.edu.au/junhaog/comp30023-labcode-current] in directory proj-2.
Note: These are not generally four-letter passwords. What is the best way to get a list of
candidate four-letter passwords?
You may also find the site https://www.thefreedictionary.com/4-letter-words.htm and
the cartoon in Fig. 1 helpful.

Ooooonooooo0ooon ~28 BITS OF ENTROPY | | \JAS IT TROMBONE? NO,

(|
UNCOMMON SBggEEnD TROUBADOR, AND ONE OF
(Now- samaﬂ UNOW'@ERN o PR || E Os Was A zerg?
I oo \ W1
m;‘s 3 mrsljnr o THERE was_'
= SOME SYMBOL...
Tr‘@u b4dor‘ &3 1000 GUESEES /sec
e concsc. A Svet
mpsp ﬂa\[”w:su s n\sm T wHAT THE
0 5UBSDTUTONS NUS"E’?H . D"“”"‘ T‘“‘”‘“’” OOy
ooo IFACOLTY TO GUESS: IFFI REMEMBER:
(e PCTATON EASY HARD
e o of AP Comtn BRAATS)]

~ 44 BITS OF ENTROPY
mlu{u[uiuinialalula]al
0ooooo0ooon

correct horse batterg staple

ooooooponoo

|_'FI.I[:__|;|-‘_J’7 -—_‘,:”—_]‘:‘ ;:Ef‘ué;_{ :E %j pongooooooo
0oooo |:.:||:1_._] T i /- ?M™=550 YE}'}RS AT
1000 GUESSES/SEC
FOUR RANDOM
COMMON WORDS DIFFICOLTY o GUESS: DIFFI(‘Zt(t.)N.U‘:":E o REMEMBER:
HARD MEMORIZED T

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS Tb GUESS,

Figure 1: Anatomy of a weak password

2.2 Unlocking the additional hashes

At 0:0lam on 17 May, a file pwd6sha256 will become available for download by scp from the
server. The first 32 bytes correspond to password 11, the second 32 bytes to password 12 etc..
You can (and are encouraged to) make these available earlier by performing a challenge-
response protocol based on Diffie-Hellman key exchange with the server. Recall from lectures
that the Diffie-Hellman Key Exchange protocol enables two parties to produce a shared secret in
an open communication channel that is observable by an adversary. The process starts with with
public parameters (g, p). Both parties choose secrets, a and b, then compute and exchanging the
values g®modp and g’modp. The computed shared secret key between the two parties is g**modp.

Write a program called DiffieHellman.c (No. Please call it dh.c. I apologize for the error.)
to run the key exchange protocol below. Upload this to the server, for example using

scp your-local-filename.c 172.26.37.44:dh.c

Note: This assumes that your ssh private key is in the usual location, ~/.ssh/id_rsa. If it
is not, you will need to use

scp -1 path-to-your-private-key your-local-filename.c 172.26.37.44:dh.c

To verify this, create the SHA256 hash of this C source using

openssl sha256 dh.c

Use the first byte of this as your Diffie-Hellman secret . That is, convert the first two hex-
adecimal digits to an integer, and use that for b.

The exchange requires you to create a socket connecting to port 7800 on the server after
uploading your source. The Diffie-Hellman component uses g = 15 and p = 97. First, send your
username, followed by a new line (‘\n’). Send the server g®(modp) as text (for example, 12 would
be sent as ‘1’, ‘2°, rather than a byte whose value is 12), followed by a new line. Do not use
a random b like with proper Diffie-Hellman; use the first byte of the SHA256 of your C source.
This will let us check that your code is working correctly. The server will send you a line in the
same format. Compute what is normally the shared secret, and then send it to the server (via the
socket) as text. The server will send a line of text saying whether or not you succeeded. You may
want to display that the the screen. This is illustrated in Figure 2

You server

Your username \

g° (mod p) \
/ g% (mod p)
(g°) (mod p) \

/ Status report

Figure 2: Protocol message sequence

This will create pwd6sha256 for download.

Using 32-bit or 64-bit arithmetic will result in overflow. Instead, use the method hinted at in
the Challenge Questions of the tutorial in Week 8.

Your C code, named dh. c, should be in your git repository and LMS submission. Inclulde any
other files that may be necessary for dh.c to compile and run.

Note that this dh.c does not need to be as “polished” as the source code of crack. Just write
something that works, and that you will still be able to understand in a month’s time. It will only
be marked for style in borderline cases. It will be tested for correctness.

3 Marking

The marks are broken down as follows:

’ Marks ‘ Task ‘

3 Correctly implementing the two-argument form of crack
2 “Good” guesses
1 Code quality
1 Build quality
3 Completing the Diffie-Hellman challenge-response
0.2 each | Discovering 4-digit passwords
0.3 each | Discovering up to 10 6-digit passwords

3.1 Code quality

Factors considered in code quality include: Choice of variable names, comments, indentation,
remaining debugging code (it is OK to have a small amount if, for example, it is disabled by an
#ifdef DEBUG), useful output indicating progress.

3.2 Build quality

Factors considered in build quality include: Producing an executable with the correct name, using
-Wall’ but yielding no warnings

3.3 Correctly implementing the two-argument form of crack

When given a list of guesses and a list of hashes, the program should correctly identify the hash
(if any) that matches the guess. The order of the output should equal the order of the guesses in
the input file.

Your code should not crash under any circumstances, but only needs to work correctly for
cases where the maximum password length is less than, say, 10,000 characters and the complete
file of hashes fits in memory.

3.4 “Good” guesses

Some passwords are more likely than others. Marks will be allocated for code that starts by
guessing likely passwords. This will be assessed in part by inspection of the code, and in part by
the behaviour of crack when run with a single argument. The behaviour marks are awarded for
the degree to which the first few passwords generated (say the first 100 (in practice, we will ask it
to generate more than 10000, to allow a reliable statistical sample to be taken)) are statistically
representative of actual passwords. For the “code inspection” marks, please include a comment of
one or two lines explaining how you generate passwords, and why it is “good”.

It is sufficient to produce only 6-character passwords. The evaluation of how good a password
is will consider several factors. One is how well the frequency of characters matches that of the
passwords the class has been given and how well it matches the distribution of characters in the
set of passwords allocated to the class. (For the curious, we will base the mark on the minimum
of the Kullback-Leibler divergence between the distribution of characters you generate and the
two distributions above. That needn’t bother your. Just try to make the passwords similar to
the examples you have.) Another is how often the same character appears multiple times in a
password.

The command line argument may be large. You have been given a list of 10,000 common
passwords, and the test will consider what you do when these run out. Your code should
eventually guess every valid password, just guess likely ones first.

3.5 Completing the Diffie-Hellman challenge-response

One mark is awarded for correctly sending ¢g®(mod p) and the other two for correctly sending
(¢*)%(mod p). These marks are awarded for doing this any time before the due date. Even if the

6-letter password hashes have been made available, completing this task will attract these marks.
It is required that dh.c perform all of these calculations, but it may do that by calling dc using
pipe () and fork().

Clarification: The original spec said to write C code, upload it and run it. Some people
uploaded something that was different from what they ran. In order for us to verify that you did
what the original spec said, we need to run your code. Please submit dh.c and any files it needs
to run as part of your LMS submission and Git submission. We will test your code by compiling
it with make dh and then running

echo b-in-decimal | ./dh b-in-decimal

You do not need to use either the command line argument or stdin, but you are welcome to use
either or both. If this fails, we will run make run-dh which should execute dh in the way you
require. If you need dh to be run a special way then include a suitable rule in your Makefile. It
should not create a file run-dh. If you do not want to learn how to write makefiles, then make
your code run with the original command above.

4 Discovering passwords

Place the passwords and hash numbers in a file found_pwds.txt in the top level directory of your
git repository, and the zip file you submit. The format should be the same as the output of crack
namely PASSWORD space HASH _ID newline.

5 Collaboration

You can discuss this project abstractly with your classmates, such as password generation strate-
gies, but should not share code. If possible, do not even look at anyone else’s code. If you really
want to help somone debug, don’t look at the screen and pretend you’re doing it over the phone.
(Yes, seriously; it’s slow but you’ll both learn from it.)

5.1 Real programmers use Stack-Exchang

Code will be run through software to detect copied code. You are welcome to use code fragments
from Stack Exchange, or any other source of information on the web, but be sure to quote the
URL whose code you used, so that it doesn’t appear that you copied a classmate.

Also note that any code you find on a site other than a question-and-answer site like Stack
Exchange may be copyright. Please only use it if there is an explicit licence allowing it, such as
Creative Commons.

5.2 Submission

The due date is at 11:59pm on Friday 24 May 2019. It is recommended that you submit before
5pm, in case you need assistance on the forum.

You must submit, to both GitLab and LMS, your source code (with a makefile) in a .zip
file with a filename in the the format of <your wusername> comp30023 2019 project-2, e.g.,
llandrew comp30023 2019 project-2. Any failure to follow the filename format will result in a
2-mark deduction. Any project not submitted to both GitLab and LMS will receive a failing
mark.

5.2.1 Special consideration

To receive special consideration, you must apply at least three days before the deadline. If you
have a chronic condition and aren’t sure if it will be a problem, tell us in advance. If you get sick
a week before the deadline and aren’t sure how it will affect you, tell us.

You can submit multiple times. Make sure that your first submission is at least three days
before the deadline so that, even if something goes wrong, you have submitted a nearly-finished
project. (Do not leave this project until last minute.)

5.3 Notes

1. To make testing easy, one password in pwd4sha256.txt is the first four letters of your
username, and one in pwd6sha256.txt is the first six letters. If your username is less than
four or six letters, it is padded with trailing spaces before taking the hash.

2. Brute force search (i.e., trying every combination of characters) is sufficient to find the four-
character passwords, if your code is efficient and if you don’t leave it to the last minute. One
possible approach is to write a brute-force search first,and while that is running, develop
the code to download the remaining hashes, and determine efficient ways generate candidate
passwords.

3. Start early. Because searching for 6-digit passwords is slow, the sooner you complete your
code, the more passwords you will discover.

4. Your code should not crash, regardless of what input it receives. If your code is given invalid
input, then it is acceptable for it not to work properly, but it is not acceptable to crash or
suffer buffer overflow.

6 Questions for reflection

These do no need to be submitted, but will help you understand the subject. You are welcome to
discuss them.

1. Not all brute-force searches are equal. How can you make brute force find passwords earlier?

2. You can write “support programs” in other languages. For example, what is the most fre-
quently used character in the sample passwords? Write a program in your favourite language
to count them, and then use that information in your C program.

3. You have a choice between making guesses randomly or systematically (such as guessing
eeeee, eeeeet, eeceea, eeeeeo, eeceeei). What are the strengths and weaknesses of each ap-
proach? Can you combine the strengths of each?

4. You may want to stop the program and restart it from where it left off, rather than repeating
the initial sequence each time. How can you do this, without using one or two command
line arguments?

5. What will happen if you create a SHA256 hash of your code and then modify it to hard-code
the first byte as the value of b? How can you avoid that problem?

