Skip to content
Snippets Groups Projects
Commit 46c488f4 authored by Callum Matchett's avatar Callum Matchett
Browse files

Update README.md

parent 85254cf4
No related branches found
No related tags found
No related merge requests found
# Assignment2 # Assignment2
rm(list=ls())
require(lubridate)
suppressWarnings(require(data.table))
require(stringr)
require(geohash)
library(raster)
require(dplyr)
library(sp)
library(broom)
library(httr)
library(rgdal)
require(sparklyr)
require(rJava)
require(readr)
first = TRUE
n = 0
for(i in 1:12){
if(first == TRUE){
taxi_jul <- fread("~/yellow_tripdata_2015-07.csv",
nrows=1000000)
taxi_jul <- taxi_jul %>% filter(weekdays(ymd_hms(tpep_pickup_datetime, tz = "America/New_York")) == "Wednesday")
n1 = nrow(taxi_jul)
first <- FALSE
}else{
taxi_bind1 <- fread("~/yellow_tripdata_2015-07.csv",
nrows=1000000, skip=n1+1)
names(taxi_bind1) <- names(taxi_jul)
taxi_bind1 <- taxi_bind1 %>% filter(weekdays(ymd_hms(tpep_pickup_datetime, tz = "America/New_York")) == "Wednesday")
taxi_jul <- bind_rows(taxi_jul, taxi_bind1)
n1 = nrow(taxi_jul)
}
}
taxi <- taxi_jul
rm(taxi_jul)
hm_pickup <- (lubridate::hour(taxi$tpep_pickup_datetime)*60)+as.numeric(lubridate::minute(taxi$tpep_pickup_datetime))
interval_5min <- vector()
for(j in seq_len(nrow(taxi))){
for(i in seq(0, 2350, by = 5)){
if(between(hm_pickup[j], i, i+5)){
interval_5min[j] = paste0("(", i, " - ", i+5, "]")
}
}
}
taxi$interval_5min <- interval_5min
#convert dropoff times to ordered factor with monday as 1, sunday as 7
dropoff_weekday_num <- weekdays(ymd_hms(taxi$tpep_dropoff_datetime, tz = "America/New_York"))
dropoff_weekday_num <- factor(dropoff_weekday_num,
levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"),
ordered = TRUE)
pickup_weekday_num <- weekdays(ymd_hms(taxi$tpep_pickup_datetime, tz = "America/New_York"))
pickup_weekday_num <- factor(pickup_weekday_num,
levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"),
ordered = TRUE)
#convert time to seconds and then make cosine and sine versions for smooth transitions between time intervals
taxi <- taxi %>% dplyr::mutate(time_hour = lubridate::hour(taxi$tpep_pickup_datetime),
time_num = (((lubridate::hour(taxi$tpep_pickup_datetime)*60*60)+
(lubridate::minute(taxi$tpep_pickup_datetime)*60)+
lubridate::second(taxi$tpep_pickup_datetime))/(60*60*24)),
time_num_cosine = cos(time_num*2*pi),
time_num_sine = sin(time_num*2*pi))
#add a feature for weekday as a numeric value - 1 for monday, 7 for sunday
taxi <- taxi %>% dplyr::mutate(weekday = pickup_weekday_num,
weekday_num = (as.numeric(weekday)+time_num)/7,
weekday_num_cosine = cos(weekday_num*2*pi),
weekday_num_sine = sin(weekday_num*2*pi))
#time difference between pickup and dropoff in seconds
taxi <- taxi %>% dplyr::mutate(time_diff_secs =
((lubridate::hour(taxi$tpep_dropoff_datetime)*60*60)+
(lubridate::minute(taxi$tpep_dropoff_datetime)*60)+
lubridate::second(taxi$tpep_dropoff_datetime)) -
((lubridate::hour(taxi$tpep_pickup_datetime)*60*60)+
(lubridate::minute(taxi$tpep_pickup_datetime)*60)+
lubridate::second(taxi$tpep_pickup_datetime)))
#create week as numeric value
taxi <- taxi %>% dplyr::mutate(weekofyear = lubridate::week(tpep_pickup_datetime),
weekofyear_num = (weekofyear+weekday_num)/53,
weekofyear_num_cosine = cos(weekofyear_num*2*pi),
weekofyear_num_sine = sin(weekofyear_num*2*pi))
#remove impossible and unlikely values
taxi <- taxi %>% dplyr::filter(time_diff_secs > 0 & time_diff_secs/60 < 300)
#convert time difference feature to be between 0 and 1 (scaled by max)
taxi <- taxi %>% dplyr::mutate(timediffsec_num = time_diff_secs/max(time_diff_secs))
#miles to kms
taxi$trip_distance <- taxi$trip_distance*1.609344
#outlier for trip distance, just remove as don't know how else to deal with it
taxi <- taxi %>% dplyr::filter(trip_distance > 0 & trip_distance < 150)
#remove longitude and latitude equal to 0
taxi <- taxi %>% dplyr::filter(pickup_longitude != 0 | pickup_latitude != 0)
taxi <- taxi %>% dplyr::filter(trip_distance > 0)
taxi <- taxi %>% dplyr::filter(total_amount < 200)
#data features inspired by https://sdaulton.github.io/TaxiPrediction/
#specifically geohashing, find out this is best in analysis below comparing to boroughs and neighbourhoods
#Also numeric values between 0 and 1 for time of day, day of week, week of year
#And extra features converting these scaled numeric values functions of sine and cosine
#to make for a more smooth transition between time periods
taxi$pickup_geohash <-gh_encode(taxi$pickup_latitude, taxi$pickup_longitude, 5)
#scale trip distance to be between 0 and 1
taxi$trip_distance_num <- taxi$trip_distance/max(taxi$trip_distance)
taxi$RatecodeID <- as.factor(taxi$RatecodeID)
taxi$passenger_count <- as.factor(taxi$passenger_count)
#scale total amount to be between 0 and 1
taxi$total_amount_num <- taxi$total_amount/max(taxi$total_amount)
#59 unique geohashes for pickups
taxi %>% count(pickup_geohash)
r <- GET('http://data.beta.nyc//dataset/0ff93d2d-90ba-457c-9f7e-39e47bf2ac5f/resource/35dd04fb-81b3-479b-a074-a27a37888ce7/download/d085e2f8d0b54d4590b1e7d1f35594c1pediacitiesnycneighborhoods.geojson')
nyc_neighborhoods <- readOGR(content(r,'text'), 'OGRGeoJSON', verbose = F)
taxi <- as.data.frame(taxi)
taxi_spdf <- SpatialPointsDataFrame(taxi[,c('pickup_longitude', 'pickup_latitude')],
proj4string = CRS("+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"),
data=taxi)
taxi_spdf <- over(taxi_spdf, nyc_neighborhoods[,c('neighborhood', 'borough')])
taxi$neighbourhood <- taxi_spdf$neighborhood
taxi$borough <- taxi_spdf$borough
glimpse(taxi)
taxi %>% group_by(neighbourhood, interval_5min) %>% count() %>% arrange(desc(n)) %>%
group_by(neighbourhood) %>% summarise(n = sum(n)) %>% arrange(desc(n))
#incredible that there is upward of 500 pickups in 5 minute intervals on a wednesday in Midtown in NYC
taxi %>% filter(neighbourhood %in% c("Midtown", "Upper East Side", "Chelsea", "Upper West Side",
"Hell's Kitchen")) %>% count(interval_5min) %>%
ggplot() + geom_col(aes(x=interval_5min, y=n)) +
theme(axis.text.x = element_text(angle = 55, hjust = 1)) + ggtitle("Pickup density for Midtown on Wednesday's in July of 2015")
tt <- taxi %>% filter(neighbourhood %in% c("Midtown", "Upper East Side")) %>% group_by(neighbourhood, interval_5min) %>%
count() %>% ungroup(taxi)
taxi2 <- taxi %>% filter(neighbourhood %in% c("Midtown", "Upper East Side"))
taxi3 <- taxi %>% filter(neighbourhood %in% c("Midtown", "Upper East Side"))
dim(taxi2)
sort(tt$n, decreasing = T)
pickup_n <- vector()
tt$neighbourhood <- as.character(tt$neighbourhood)
tt_mid <- tt %>% filter(neighbourhood == "Midtown")
names(tt_mid)[3] <- "n1"
tt_ues <- tt %>% filter(neighbourhood == "Upper East Side")
names(tt_ues)[2:3] <- c("neighbourhood2", "n2")
tt_ues <- tt_ues %>% dplyr::select(neighbourhood2, n2)
tt <- cbind(tt_mid, tt_ues)
head(tt)
for(i in 1:nrow(taxi2)){
for(j in 1:length(unique(tt$interval_5min))){
if(taxi2$interval_5min[i] == tt$interval_5min[j]){
if(taxi2$neighbourhood[i] == tt$neighbourhood[j]){
pickup_n[i] = tt$n1[j]
}else{
pickup_n[i] = tt$n2[j]
}
}
}
}
taxi2$pickup_n <- pickup_n
glimpse(taxi2)
taxi2 %>% filter(neighbourhood == "Midtown") %>% count(interval_5min) %>%
ggplot() + geom_col(aes(x=reorder(interval_5min, n), y=n)) +
theme(axis.text.x=element_blank(), axis.ticks.x=element_blank()) + xlab("Time")+ggtitle("Midtown")
taxi2 %>% filter(neighbourhood == "Upper East Side") %>% count(interval_5min) %>%
ggplot() + geom_col(aes(x=reorder(interval_5min, n), y=n)) + theme(axis.text.x=element_blank(),
axis.ticks.x=element_blank()) +ggtitle("Upper East Side") + xlab("Time")
taxi2 %>% filter(neighbourhood == "Midtown") %>% count(interval_5min) %>% mutate(sd = sd(n))
taxi2 %>% filter(neighbourhood == "Upper East Side") %>% count(interval_5min) %>% mutate(sd = sd(n))
glimpse(taxi2)
taxi2$VendorID <- as.factor(taxi2$VendorID)
taxi2$payment_type <- as.factor(taxi2$payment_type)
taxi2 <- taxi2 %>% dplyr::select(VendorID, passenger_count, RatecodeID, payment_type, time_num, time_num_cosine, time_num_sine,
weekday_num, weekday_num_cosine, weekday_num_sine, timediffsec_num, trip_distance_num,
total_amount_num, neighbourhood, interval_5min, pickup_n)
taxi2 %>% filter(neighbourhood == "Midtown") %>% group_by(interval_5min) %>%
summarise(tan = median(total_amount_num), tdn = median(trip_distance_num), tdsn = median(timediffsec_num),
woyns = mean(weekofyear_num_sine), woync = mean(weekofyear_num_cosine), woyn = median(weekofyear_num),
tns = mean(time_num_sine), tnc = mean(time_num_cosine), tn = median(time_num))
Y <- taxi %>% filter(neighbourhood == "Midtown") %>% count(pickup_halfhr_cat) %>% dplyr::select(n)
taxi <- taxi %>% dplyr::mutate(Y = Y$n)
taxi2 %>% filter(neighbourhood == "Midtown") %>%
ggplot() + geom_col(aes(x=interval_5min, y=pickup_n))
write.csv(taxi2, "D:/R/TaxiAssignment/taxi_ml_format.csv")
#######SPARK
cluster_url <- paste0("spark://", system("hostname -i", intern = TRUE), ":7077")
library(sparklyr)
library(readr)
library(dplyr)
sc <- spark_connect(master = cluster_url)
spark_read_csv(sc, "taxi_ml_format.csv", path = "")
taxi_ml_format <- read_csv("taxi_ml_format.csv")
taxi_ml_format <- taxi_ml_format %>% select(-X1)
X_data <- taxi_ml_format
X_data$VendorID <- as.factor(X_data$VendorID)
X_data$RatecodeID <- as.factor(X_data$RatecodeID)
X_data$payment_type <- as.factor(X_data$payment_type)
X_data$passenger_count <- as.factor(X_data$passenger_count)
X_tbl <- copy_to(sc, X_data, "x_data", overwrite=T)
partitions <- X_tbl %>%
sdf_partition(training = 0.75, test = 0.25, seed = 1099)
taxi_training <- partitions$training
taxi_test <- partitions$test
#baseline
lm <- ml_linear_regression(taxi_training, pickup_n~.)
rf_model <- taxi_training %>%
ml_random_forest(pickup_n ~ ., type = "regression")
pred_lm <- sdf_predict(taxi_test, lm)
pred_rf <- sdf_predict(taxi_test, rf_model)
ml_regression_evaluator(pred_lm, label_col = "pickup_n", prediction_col = "prediction", metric_name="r2")
ml_regression_evaluator(pred_rf, label_col = "pickup_n", prediction_col = "prediction", metric_name="r2")
ml_regression_evaluator(pred_lm, label_col = "pickup_n", prediction_col = "prediction", metric_name="rmse")
ml_regression_evaluator(pred_rf, label_col = "pickup_n", prediction_col = "prediction", metric_name="rmse")
imp <- sparklyr::ml_feature_importances(rf_model)
spark_disconnect(sc)
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment