Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
C
Collective risk game
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Liyao Zhu
Collective risk game
Commits
7df1e797
Commit
7df1e797
authored
May 9, 2019
by
Liyao Zhu
Browse files
Options
Downloads
Patches
Plain Diff
T-tests
parent
39bac2e3
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
game.py
+2
-243
2 additions, 243 deletions
game.py
main.py
+317
-0
317 additions, 0 deletions
main.py
with
319 additions
and
243 deletions
game.py
+
2
−
243
View file @
7df1e797
import
matplotlib.pyplot
as
plt
from
matplotlib
import
cm
from
mpl_toolkits.mplot3d
import
Axes3D
import
numpy
as
np
import
utilis
,
agent
,
graph
import
agent
,
graph
class
g
ame
:
class
G
ame
:
def
__init__
(
self
,
N
=
100
,
R
=
1
,
K
=
99
,
P
=
0
,
Actions
=
[
0
,
0.2
,
0.4
,
0.6
,
0.8
],
I
=
1000
,
RF
=
0
,
alpha
=
1
,
epsilon
=
0.1
,
multiArm
=
'
greedy
'
,
threshold
=
0.8
):
# datamap = utilis.read()
...
...
@@ -130,241 +127,3 @@ class game:
return
results
def
stackPlot
(
data
,
r
,
Actions
,
Iterations
,
titleComment
=
""
):
A
=
len
(
Actions
)
x
=
range
(
Iterations
)
y
=
np
.
zeros
((
Iterations
,
A
))
for
i
in
range
(
Iterations
):
y
[
i
]
=
data
[
i
][
r
]
y
=
np
.
vstack
(
y
.
T
)
fig
,
ax
=
plt
.
subplots
()
# grays = np.arange(0, 1, (max(Actions) - min(Actions))/A)
ax
.
stackplot
(
x
,
y
,
labels
=
Actions
,
colors
=
[
str
(
0.9
-
0.9
*
x
)
for
x
in
Actions
])
ax
.
legend
(
loc
=
'
best
'
)
plt
.
ylabel
(
'
Number of Actions
'
)
plt
.
xlabel
(
'
Time(iterations)
'
)
title
=
'
Average Number of Actions in Round
'
+
str
(
r
+
1
)
if
titleComment
:
title
+=
"
\n
"
+
titleComment
plt
.
title
(
title
)
plt
.
savefig
(
titleComment
+
"
in round
"
+
str
(
r
+
1
)
+
"
.png
"
)
plt
.
show
()
# def rep(repeat, N=100, R=1, K=99, P=0, Actions=[0, 0.2, 0.4, 0.6, 0.8], I=1000, RF=0, alpha=1, epsilon=0.1, multiArm='greedy'):
def
rep
(
repeat
=
30
,
R
=
1
,
Actions
=
[
0
,
0.2
,
0.4
,
0.6
,
0.8
],
I
=
1000
,
**
kwargs
):
data
=
np
.
zeros
((
I
,
R
,
len
(
Actions
)))
Actions
.
sort
()
for
re
in
range
(
repeat
):
print
(
"
REP
"
,
re
)
g
=
game
(
R
=
R
,
Actions
=
Actions
,
I
=
I
,
**
kwargs
)
result
=
g
.
play
()
data
+=
result
data
/=
repeat
return
data
def
averageOfLast
(
data
,
Actions
,
N
=
100
,
r
=
0
,
lastIterations
=
100
):
sum
=
0
action_counter
=
{
action
:
0
for
action
in
Actions
}
for
i
in
range
(
-
1
,
-
lastIterations
-
1
,
-
1
):
sum
+=
np
.
sum
(
data
[
i
,
r
]
*
Actions
)
for
a
in
range
(
len
(
Actions
)):
action_counter
[
Actions
[
a
]]
+=
data
[
i
,
r
,
a
]
/
lastIterations
return
(
sum
/
(
lastIterations
*
N
),
action_counter
)
def
graph_kp3d
(
Actions
,
Klist
=
[
2
,
4
,
8
,
10
],
Plist
=
[
0
,
0.3
,
0.6
,
0.9
],
repeat
=
30
,
N
=
100
):
K
=
Klist
P
=
Plist
meanA
=
np
.
zeros
((
len
(
K
),
len
(
P
)))
for
k
in
range
(
len
(
K
)):
for
p
in
range
(
len
(
P
)):
data
=
rep
(
repeat
,
K
=
K
[
k
],
P
=
P
[
p
],
Actions
=
Actions
)
# Specify other params by adding here
meanA
[
k
][
p
]
=
averageOfLast
(
data
,
Actions
,
lastIterations
=
100
,
N
=
N
)[
0
]
# Doing the first round only -- for now
print
(
"
k, p, mean
"
,
k
,
p
,
meanA
[
k
][
p
])
P
,
K
=
np
.
meshgrid
(
P
,
K
)
fig
=
plt
.
figure
()
ax
=
fig
.
gca
(
projection
=
'
3d
'
)
surf
=
ax
.
plot_surface
(
P
,
K
,
meanA
,
cmap
=
cm
.
coolwarm
,
linewidth
=
0
,
antialiased
=
False
)
fig
.
colorbar
(
surf
,
shrink
=
0.5
,
aspect
=
5
)
plt
.
show
()
def
graph3d_alpha_threshold
(
Actions
,
repeat
=
30
,
AlphaList
=
np
.
arange
(
0
,
1.01
,
0.05
),
ThreshList
=
np
.
arange
(
0.1
,
1.1
,
0.1
),
N
=
100
,
**
kwargs
):
mean
=
np
.
zeros
((
len
(
ThreshList
),
len
(
AlphaList
)))
ratio_by_threshold
=
np
.
zeros
((
len
(
ThreshList
),
len
(
AlphaList
)))
for
t
in
range
(
len
(
ThreshList
)):
for
a
in
range
(
len
(
AlphaList
)):
print
(
"
Calculating... t, alpha =
"
,
t
,
a
)
data
=
rep
(
repeat
=
repeat
,
Actions
=
Actions
,
alpha
=
AlphaList
[
a
],
threshold
=
ThreshList
[
t
],
**
kwargs
)
mean
[
t
][
a
]
=
averageOfLast
(
data
,
Actions
,
lastIterations
=
100
,
N
=
N
)[
0
]
ratio_by_threshold
[
t
]
=
mean
[
t
]
/
ThreshList
[
t
]
A
,
T
=
np
.
meshgrid
(
AlphaList
,
ThreshList
)
fig
=
plt
.
figure
()
ax
=
fig
.
gca
(
projection
=
'
3d
'
)
surf
=
ax
.
plot_surface
(
A
,
T
,
mean
,
cmap
=
cm
.
Greys
,
linewidth
=
0
,
antialiased
=
False
)
ax
.
set_xlabel
(
'
Alpha
'
)
# ax.invert_xaxis()
ax
.
set_ylabel
(
'
Threshold
'
)
ax
.
set_zlabel
(
'
Average contribution
'
)
fig
.
colorbar
(
surf
,
shrink
=
0.5
,
aspect
=
5
)
# plt.show()
fig2
=
plt
.
figure
()
ax2
=
fig2
.
gca
(
projection
=
'
3d
'
)
surf2
=
ax2
.
plot_surface
(
A
,
T
,
ratio_by_threshold
,
cmap
=
cm
.
Greys
,
linewidth
=
0
,
antialiased
=
False
)
ax2
.
set_xlabel
(
'
Alpha
'
)
# ax.invert_xaxis()
ax2
.
set_ylabel
(
'
Threshold
'
)
# ax.invert_yaxis()
ax2
.
set_zlabel
(
'
Average contribution by threshold
'
)
fig2
.
colorbar
(
surf2
,
shrink
=
0.5
,
aspect
=
5
)
plt
.
show
()
# def hist2d_alpha_threshold(Actions, repeat=30, AlphaList=np.arange(0, 1.1, 0.1), ThreshList=np.arange(0, 1.1, 0.2), **kwargs):
def
stackBar
(
r
,
Actions
,
repeat
=
30
,
multiArm
=
'
greedy
'
,
**
kwargs
):
# Plotting the data for round r
# if len(kwargs) != 1:
# print("ERROR, Stack Bar Graph Expects 1 List, gets:", len(kwargs))
# key, alist = list(kwargs.items())[0]
key
=
-
1
alist
=
[]
for
k
,
v
in
kwargs
.
items
():
if
isinstance
(
v
,
list
):
if
key
==
-
1
:
key
=
k
alist
=
v
else
:
print
(
"
ERROR, Stack Bar Graph Expects Only 1 List to Compare
"
)
exit
(
4
)
del
kwargs
[
key
]
print
(
"
Comparing:
"
,
key
)
print
(
"
On:
"
,
alist
)
A
=
len
(
Actions
)
p
=
[]
count
=
np
.
zeros
((
A
,
len
(
alist
)))
# of each action in each iter
ind
=
np
.
arange
(
len
(
alist
))
width
=
0.3
for
al
in
range
(
len
(
alist
)):
newKwargs
=
{
**
{
key
:
alist
[
al
]},
**
kwargs
}
if
key
==
'
N
'
:
newKwargs
[
'
K
'
]
=
alist
[
al
]
-
1
elif
'
N
'
not
in
newKwargs
.
keys
():
newKwargs
[
'
N
'
]
=
100
# default value
data
=
rep
(
repeat
,
Actions
=
Actions
,
multiArm
=
multiArm
,
**
newKwargs
)
/
newKwargs
[
'
N
'
]
*
100
action_counter
=
averageOfLast
(
data
,
Actions
,
r
,
100
)[
1
]
for
a
in
range
(
A
):
count
[
a
,
al
]
=
action_counter
[
Actions
[
a
]]
base
=
0
for
a
in
range
(
A
):
p
.
append
(
plt
.
bar
(
ind
,
count
[
a
],
width
,
bottom
=
base
,
color
=
str
(
0.9
-
0.9
*
Actions
[
a
])))
base
+=
count
[
a
]
plt
.
ylabel
(
'
Percentage of Actions
'
)
if
key
==
'
epsilon
'
:
plt
.
xlabel
(
key
+
'
(
'
+
multiArm
+
'
)
'
)
else
:
plt
.
xlabel
(
key
)
plt
.
title
(
'
Average Number of Actions in Round
'
+
str
(
r
+
1
))
plt
.
xticks
(
ind
,
alist
)
plt
.
yticks
(
np
.
arange
(
0
,
101
,
10
))
plt
.
legend
(
tuple
([
p
[
x
][
0
]
for
x
in
range
(
A
)][::
-
1
]),
tuple
(
Actions
[::
-
1
]),
loc
=
'
best
'
)
plt
.
show
()
def
main
():
# Read-in or Define Parameters
N
=
100
R
=
2
K
=
99
P
=
0
I
=
1000
RF
=
0
alpha
=
1
Actions
=
[
0
,
0.2
,
0.4
,
0.6
,
0.8
]
"""
Graph1: Number of Actions of Round r (start by 0) by Iteration
"""
# RepeatTimes = 30
# for N in [5, 10, 20, 50, 100]:
# K = N - 1
# for R in [1, 2, 4]:
# for alpha in [0.2, 0.4, 0.6, 0.8, 1]:
# data = rep(RepeatTimes, R, Actions, I, N=N, K=K, alpha=alpha)
# for r in range(R):
# stackPlot(data, r, Actions, I, titleComment="N="+ str(N) + ", R=" + str(R) + ", alpha=" +str(alpha) + ", Well-Mixed graph")
# for k in [2, 4, 10, 40, 90, 99]:
# data = rep(repeat=30, N=100, K=k, Actions=Actions, R=1, I=I, P=P)
# stackPlot(data, r=0, Iterations=I, Actions=Actions, titleComment=("K=" + str(k) + ", P=" + str(P)))
# data = rep(repeat=30, Actions=Actions, R=1, I=I, RF=2, threshold=0.3)
# stackPlot(data, r=0, Iterations=I, Actions=Actions, titleComment="threshold = 0.3")
"""
Graph2: Average contribution by K, P
"""
# graph_kp3d(Actions)
"""
Graph3: Comparing a parameter (put in a list)
"""
# stackBar(0, Actions, repeat=1, alpha=[0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1])
# stackBar(0, Actions, repeat=30, N=[5, 10, 20, 50, 100], threshold=0.6, RF=2)
# stackBar(0, Actions, repeat=1, RF=2, threshold=[0.2, 0.4, 0.6, 0.8, 1])
"""
Graph4: Actions by different epsilon method + value
"""
# stackBar(0, Actions, repeat=1, multiArm='greedy', epsilon=[0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
# stackBar(0, Actions, repeat=30, multiArm='decrease', epsilon=[0.8, 0.9, 0.95, 0.98, 0.99, 0.999, 0.9999])
"""
Graph4: Average contribution by Alpha and Threshold
"""
graph3d_alpha_threshold
(
Actions
,
repeat
=
30
,
RF
=
2
)
if
__name__
==
'
__main__
'
:
main
()
\ No newline at end of file
This diff is collapsed.
Click to expand it.
main.py
0 → 100644
+
317
−
0
View file @
7df1e797
import
matplotlib.pyplot
as
plt
from
matplotlib
import
cm
from
mpl_toolkits.mplot3d
import
Axes3D
import
numpy
as
np
import
scipy
from
scipy
import
stats
import
game
def
stackPlot
(
data
,
r
,
Actions
,
Iterations
,
titleComment
=
""
):
A
=
len
(
Actions
)
x
=
range
(
Iterations
)
y
=
np
.
zeros
((
Iterations
,
A
))
for
i
in
range
(
Iterations
):
y
[
i
]
=
data
[
i
][
r
]
y
=
np
.
vstack
(
y
.
T
)
fig
,
ax
=
plt
.
subplots
()
ax
.
stackplot
(
x
,
y
,
labels
=
Actions
,
colors
=
[
str
(
0.9
-
0.9
*
x
)
for
x
in
Actions
])
ax
.
legend
(
loc
=
'
best
'
)
plt
.
ylabel
(
'
Number of Actions
'
)
plt
.
xlabel
(
'
Time(iterations)
'
)
title
=
'
Average Number of Actions in Round
'
+
str
(
r
+
1
)
if
titleComment
:
title
+=
"
\n
"
+
titleComment
plt
.
title
(
title
)
# plt.savefig(titleComment + " in round " + str(r+1) + ".png")
plt
.
show
()
def
rep
(
repeat
=
30
,
R
=
1
,
Actions
=
[
0
,
0.2
,
0.4
,
0.6
,
0.8
],
I
=
1000
,
**
kwargs
):
data
=
np
.
zeros
((
I
,
R
,
len
(
Actions
)))
Actions
.
sort
()
for
re
in
range
(
repeat
):
print
(
"
REP
"
,
re
)
g
=
game
.
Game
(
R
=
R
,
Actions
=
Actions
,
I
=
I
,
**
kwargs
)
result
=
g
.
play
()
data
+=
result
data
/=
repeat
return
data
def
averageOfLast
(
data
,
Actions
,
N
=
100
,
r
=
0
,
lastIterations
=
100
):
sum
=
0
action_counter
=
{
action
:
0
for
action
in
Actions
}
for
i
in
range
(
-
1
,
-
lastIterations
-
1
,
-
1
):
sum
+=
np
.
sum
(
data
[
i
,
r
]
*
Actions
)
for
a
in
range
(
len
(
Actions
)):
action_counter
[
Actions
[
a
]]
+=
data
[
i
,
r
,
a
]
/
lastIterations
return
(
sum
/
(
lastIterations
*
N
),
action_counter
)
def
graph_kp3d
(
Actions
,
Klist
=
[
2
,
4
,
8
,
10
],
Plist
=
[
0
,
0.3
,
0.6
,
0.9
],
repeat
=
30
,
N
=
100
):
K
=
Klist
P
=
Plist
meanA
=
np
.
zeros
((
len
(
K
),
len
(
P
)))
for
k
in
range
(
len
(
K
)):
for
p
in
range
(
len
(
P
)):
data
=
rep
(
repeat
,
K
=
K
[
k
],
P
=
P
[
p
],
Actions
=
Actions
)
# Specify other params by adding here
meanA
[
k
][
p
]
=
averageOfLast
(
data
,
Actions
,
lastIterations
=
100
,
N
=
N
)[
0
]
# Doing the first round only -- for now
print
(
"
k, p, mean
"
,
k
,
p
,
meanA
[
k
][
p
])
P
,
K
=
np
.
meshgrid
(
P
,
K
)
fig
=
plt
.
figure
()
ax
=
fig
.
gca
(
projection
=
'
3d
'
)
surf
=
ax
.
plot_surface
(
P
,
K
,
meanA
,
cmap
=
cm
.
coolwarm
,
linewidth
=
0
,
antialiased
=
False
)
fig
.
colorbar
(
surf
,
shrink
=
0.5
,
aspect
=
5
)
plt
.
show
()
def
graph3d_alpha_threshold
(
Actions
,
repeat
=
30
,
AlphaList
=
np
.
arange
(
0
,
1.01
,
0.05
),
ThreshList
=
np
.
arange
(
0.1
,
1.1
,
0.1
),
N
=
100
,
**
kwargs
):
mean
=
np
.
zeros
((
len
(
ThreshList
),
len
(
AlphaList
)))
ratio_by_threshold
=
np
.
zeros
((
len
(
ThreshList
),
len
(
AlphaList
)))
for
t
in
range
(
len
(
ThreshList
)):
for
a
in
range
(
len
(
AlphaList
)):
print
(
"
Calculating... t, alpha =
"
,
t
,
a
)
data
=
rep
(
repeat
=
repeat
,
Actions
=
Actions
,
alpha
=
AlphaList
[
a
],
threshold
=
ThreshList
[
t
],
**
kwargs
)
mean
[
t
][
a
]
=
averageOfLast
(
data
,
Actions
,
lastIterations
=
100
,
N
=
N
)[
0
]
ratio_by_threshold
[
t
]
=
mean
[
t
]
/
ThreshList
[
t
]
A
,
T
=
np
.
meshgrid
(
AlphaList
,
ThreshList
)
fig
=
plt
.
figure
()
ax
=
fig
.
gca
(
projection
=
'
3d
'
)
surf
=
ax
.
plot_surface
(
A
,
T
,
mean
,
cmap
=
cm
.
Greys
,
linewidth
=
0
,
antialiased
=
False
)
ax
.
set_xlabel
(
'
Alpha
'
)
# ax.invert_xaxis()
ax
.
set_ylabel
(
'
Threshold
'
)
ax
.
set_zlabel
(
'
Average contribution
'
)
fig
.
colorbar
(
surf
,
shrink
=
0.5
,
aspect
=
5
)
# plt.show()
fig2
=
plt
.
figure
()
ax2
=
fig2
.
gca
(
projection
=
'
3d
'
)
surf2
=
ax2
.
plot_surface
(
A
,
T
,
ratio_by_threshold
,
cmap
=
cm
.
Greys
,
linewidth
=
0
,
antialiased
=
False
)
ax2
.
set_xlabel
(
'
Alpha
'
)
# ax.invert_xaxis()
ax2
.
set_ylabel
(
'
Threshold
'
)
# ax.invert_yaxis()
ax2
.
set_zlabel
(
'
Average contribution by threshold
'
)
fig2
.
colorbar
(
surf2
,
shrink
=
0.5
,
aspect
=
5
)
plt
.
show
()
def
stackBar
(
r
,
Actions
,
repeat
=
30
,
multiArm
=
'
greedy
'
,
**
kwargs
):
# Plotting the data for round r
# if len(kwargs) != 1:
# print("ERROR, Stack Bar Graph Expects 1 List, gets:", len(kwargs))
# key, alist = list(kwargs.items())[0]
key
=
-
1
alist
=
[]
for
k
,
v
in
kwargs
.
items
():
if
isinstance
(
v
,
list
):
if
key
==
-
1
:
key
=
k
alist
=
v
else
:
print
(
"
ERROR, Stack Bar Graph Expects Only 1 List to Compare
"
)
exit
(
4
)
del
kwargs
[
key
]
print
(
"
Comparing:
"
,
key
)
print
(
"
On:
"
,
alist
)
A
=
len
(
Actions
)
p
=
[]
count
=
np
.
zeros
((
A
,
len
(
alist
)))
# of each action in each iter
ind
=
np
.
arange
(
len
(
alist
))
width
=
0.3
for
al
in
range
(
len
(
alist
)):
newKwargs
=
{
**
{
key
:
alist
[
al
]},
**
kwargs
}
if
key
==
'
N
'
:
newKwargs
[
'
K
'
]
=
alist
[
al
]
-
1
elif
'
N
'
not
in
newKwargs
.
keys
():
newKwargs
[
'
N
'
]
=
100
# default value
data
=
rep
(
repeat
,
Actions
=
Actions
,
multiArm
=
multiArm
,
**
newKwargs
)
/
newKwargs
[
'
N
'
]
*
100
action_counter
=
averageOfLast
(
data
,
Actions
,
r
=
r
,
lastIterations
=
100
)[
1
]
for
a
in
range
(
A
):
count
[
a
,
al
]
=
action_counter
[
Actions
[
a
]]
base
=
0
for
a
in
range
(
A
):
p
.
append
(
plt
.
bar
(
ind
,
count
[
a
],
width
,
bottom
=
base
,
color
=
str
(
0.9
-
0.9
*
Actions
[
a
])))
base
+=
count
[
a
]
plt
.
ylabel
(
'
Percentage of Actions
'
)
if
key
==
'
epsilon
'
:
plt
.
xlabel
(
key
+
'
(
'
+
multiArm
+
'
)
'
)
else
:
plt
.
xlabel
(
key
)
plt
.
title
(
'
Average Number of Actions in Round
'
+
str
(
r
+
1
))
plt
.
xticks
(
ind
,
alist
)
plt
.
yticks
(
np
.
arange
(
0
,
101
,
10
))
plt
.
legend
(
tuple
([
p
[
x
][
0
]
for
x
in
range
(
A
)][::
-
1
]),
tuple
(
Actions
[::
-
1
]),
loc
=
'
best
'
)
plt
.
show
()
def
t_test
(
repeat
,
Actions
,
r
=
0
,
R
=
1
,
I
=
1000
,
lastIterations
=
100
,
N
=
100
,
byThreshold
=
False
,
**
kwargs
):
key
=
-
1
atuple
=
()
for
k
,
v
in
kwargs
.
items
():
if
isinstance
(
v
,
tuple
):
if
key
==
-
1
:
key
=
k
atuple
=
v
else
:
print
(
"
ERROR, T-Test Expects Only 1 Tuple to Compare
"
)
exit
(
5
)
del
kwargs
[
key
]
samples
=
np
.
zeros
((
2
,
repeat
))
for
s
in
(
0
,
1
):
newArgs
=
{
**
{
key
:
atuple
[
s
]},
**
kwargs
}
# for re in range(repeat):
# # print("T-Test REP", re)
# g = game.Game(R=R, Actions=Actions, I=I, N=N, **newArgs)
# result = g.play()
# samples[s, re] = averageOfLast(result, Actions, N, r, lastIterations)[0]
samples
[
s
]
=
repHist
(
repeat
,
Actions
,
R
,
r
,
I
,
lastIterations
,
N
,
**
newArgs
)
if
byThreshold
:
samples
[
s
]
/=
newArgs
[
"
threshold
"
]
print
(
"
Sample
"
,
s
,
samples
[
s
])
print
(
stats
.
ttest_ind
(
samples
[
0
],
samples
[
1
]))
def
repHist
(
repeat
,
Actions
,
R
=
1
,
r
=
0
,
I
=
1000
,
lastIterations
=
100
,
N
=
100
,
**
kwargs
):
hist
=
np
.
zeros
(
repeat
)
for
re
in
range
(
repeat
):
print
(
"
HistREP
"
,
re
)
g
=
game
.
Game
(
R
=
R
,
Actions
=
Actions
,
I
=
I
,
N
=
N
,
**
kwargs
)
result
=
g
.
play
()
hist
[
re
]
=
averageOfLast
(
result
,
Actions
,
N
,
r
,
lastIterations
)[
0
]
return
hist
def
main
():
# Read-in or Define Parameters
N
=
100
R
=
1
K
=
99
P
=
0
I
=
1000
RF
=
0
alpha
=
1
Actions
=
[
0
,
0.2
,
0.4
,
0.6
,
0.8
]
"""
Graph1: Number of Actions of Round r (start by 0) by Iteration
"""
# RepeatTimes = 30
# for N in [5, 10, 20, 50, 100]:
# K = N - 1
# for R in [1, 2, 4]:
# for alpha in [0.2, 0.4, 0.6, 0.8, 1]:
# data = rep(RepeatTimes, R, Actions, I, N=N, K=K, alpha=alpha)
# for r in range(R):
# stackPlot(data, r, Actions, I, titleComment="N="+ str(N) + ", R=" + str(R) + ", alpha=" +str(alpha) + ", Well-Mixed graph")
# for k in [2, 99]:
# for p in [0.8]:
# data = rep(repeat=30, N=100, K=k, Actions=Actions, R=1, I=I, P=p)
# stackPlot(data, r=0, Iterations=I, Actions=Actions, titleComment=("K=" + str(k) + ", P=" + str(p)))
# data = rep(repeat=30, Actions=Actions, R=1, I=I, RF=2, threshold=0.3)
# stackPlot(data, r=0, Iterations=I, Actions=Actions, titleComment="threshold = 0.3")
"""
Graph2: Average contribution by K, P
"""
# graph_kp3d(Actions)
"""
Graph3: Comparing a parameter (put in a list)
"""
# stackBar(0, Actions, repeat=1, alpha=[0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1])
# stackBar(0, Actions, repeat=1, N=[5, 10, 20, 50, 100], threshold=0.6, RF=2)
# stackBar(0, Actions, repeat=1, RF=2, threshold=[0.2, 0.4, 0.6, 0.8, 1])
"""
Graph4: Actions by different epsilon method + value
"""
# stackBar(0, Actions, repeat=1, multiArm='greedy', epsilon=[0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
# stackBar(0, Actions, repeat=1, multiArm='decrease', epsilon=[0.8, 0.9, 0.95, 0.98, 0.99, 0.999, 0.9999])
"""
Graph5: Average contribution by Alpha and Threshold
"""
# graph3d_alpha_threshold(Actions, repeat=1, RF=2)
"""
T-Test
"""
# t_test(30, Actions, alpha=1, RF=2, threshold=(0.2, 0.3), byThreshold=True) #p=3.324e-31
# t_test(30, Actions, alpha=1, RF=2, threshold=(0.6, 1.0)) #pvalue=0.2208
# t_test(30, Actions, alpha=1, RF=2, threshold=(0.8, 1.0)) #pvalue=0.1096
# t_test(30, Actions, alpha=1, RF=2, threshold=(0.5, 1.0)) #pvalue=2.2067e-08
# t_test(30, Actions, alpha=0.85, RF=2, threshold=(0.2, 0.3), byThreshold=True) #pvalue=0.005865
# t_test(30, Actions, alpha=(1, 0.9), RF=2, threshold=0.2) #pvalue=0.3748
# t_test(30, Actions, alpha=(1, 0.85), RF=2, threshold=0.2) #pvalue=0.001466
# t_test(30, Actions, alpha=(1, 0.8), RF=2, threshold=0.2) #pvalue=0.0002030
# t_test(30, Actions, alpha=(1, 0.75), RF=2, threshold=0.2) #pvalue=3.9617e-07
# t_test(30, Actions, alpha=(1, 0.7), RF=2, threshold=0.2) #pvalue=2.2428e-09
# t_test(30, Actions, alpha=(1, 0.65), RF=2, threshold=0.2) #pvalue=6.8966e-09
# t_test(30, Actions, alpha=(1, 0.6), RF=2, threshold=0.2) #pvalue=7.1621e-15
# t_test(30, Actions, alpha=(1, 0.5), RF=2, threshold=0.2) #pvalue=4.1760e-13
# t_test(30, Actions, alpha=(1, 0.45), RF=2, threshold=0.2) #pvalue=1.3749e-11
# t_test(30, Actions, alpha=(1, 0.4), RF=2, threshold=0.2) #pvalue=3.8352e-19
"""
T-TEST GRAPH
"""
# t_test(30, Actions, K=(2, 99), P=0) #pvalue=0.4278
# t_test(30, Actions, K=(2, 99), P=0.9) #pvalue=0.4541
# t_test(100, Actions, K=(2, 99), P=0.8) #pvalue=0.01502 ***
# t_test(30, Actions, K=(2, 99), P=0.85) #pvalue=0.1931
# t_test(30, Actions, K=(2, 99), P=0.75) #pvalue=0.5630
# t_test(30, Actions, K=2, P=(0, 0.9)) #pvalue=0.9806
# t_test(30, Actions, K=2, P=(0, 0.8)) #pvalue=0.4523
# t_test(30, Actions, K=(2, 99), P=0.9) #pvalue=0.4541
# t_test(30, Actions, K=(2, 99), P=0.7) #pvalue=0.3698
if
__name__
==
'
__main__
'
:
main
()
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment