Skip to content
Snippets Groups Projects
Commit 46fe0c0c authored by Sean Paeglis's avatar Sean Paeglis
Browse files

ML

parent 38c54ba2
Branches
No related tags found
No related merge requests found
File added
ai-part-b-master @ 7d1282b7
Subproject commit 7d1282b7852f205d0eab5ad6c1a48222e04d42ab
config 0 → 100644
# NEAT configuration for the bit-sequence memory experiment.
# The `NEAT` section specifies parameters particular to the NEAT algorithm
# or the experiment itself. This is the only required section.
[NEAT]
fitness_criterion = max
fitness_threshold = 600.0
pop_size = 100
reset_on_extinction = 0
[DefaultGenome]
num_inputs = 4
num_hidden = 1
num_outputs = 1
initial_connection = partial_direct 0.5
feed_forward = True
compatibility_disjoint_coefficient = 1.0
compatibility_weight_coefficient = 0.6
conn_add_prob = 0.2
conn_delete_prob = 0.2
node_add_prob = 0.2
node_delete_prob = 0.2
activation_default = sigmoid
activation_options = sigmoid
activation_mutate_rate = 0.0
aggregation_default = sum
aggregation_options = sum
aggregation_mutate_rate = 0.0
bias_init_mean = 0.0
bias_init_stdev = 1.0
bias_replace_rate = 0.1
bias_mutate_rate = 0.7
bias_mutate_power = 0.5
bias_max_value = 30.0
bias_min_value = -30.0
response_init_mean = 1.0
response_init_stdev = 0.0
response_replace_rate = 0.0
response_mutate_rate = 0.0
response_mutate_power = 0.0
response_max_value = 30.0
response_min_value = -30.0
weight_max_value = 30
weight_min_value = -30
weight_init_mean = 0.0
weight_init_stdev = 1.0
weight_mutate_rate = 0.8
weight_replace_rate = 0.1
weight_mutate_power = 0.5
enabled_default = True
enabled_mutate_rate = 0.01
[DefaultSpeciesSet]
compatibility_threshold = 3.0
[DefaultStagnation]
species_fitness_func = max
max_stagnation = 20
[DefaultReproduction]
elitism = 2
survival_threshold = 0.2
from itertools import cycle
from numpy.random import randint,choice
import sys
import neat
import os
import random
GENERATION = 0
MAX_FITNESS = 0
BEST_GENOME = 0
def eval_genomes(genomes, config):
i = 0
global SCORE
global GENERATION, MAX_FITNESS, BEST_GENOME
GENERATION += 1
for genome_id, genome in genomes:
genome.fitness = random.randint(1,10)
print("Gen : %d Genome # : %d Fitness : %f Max Fitness : %f"%(GENERATION,i,genome.fitness, MAX_FITNESS))
if genome.fitness >= MAX_FITNESS:
MAX_FITNESS = genome.fitness
BEST_GENOME = genome
SCORE = 0
i+=1
config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction,
neat.DefaultSpeciesSet, neat.DefaultStagnation,
'config')
pop = neat.Population(config)
stats = neat.StatisticsReporter()
pop.add_reporter(stats)
winner = pop.run(eval_genomes, 30)
print(winner)
\ No newline at end of file
from __future__ import print_function
import copy
import warnings
import graphviz
import matplotlib.pyplot as plt
import numpy as np
def plot_stats(statistics, ylog=False, view=False, filename='avg_fitness.svg'):
""" Plots the population's average and best fitness. """
if plt is None:
warnings.warn("This display is not available due to a missing optional dependency (matplotlib)")
return
generation = range(len(statistics.most_fit_genomes))
best_fitness = [c.fitness for c in statistics.most_fit_genomes]
avg_fitness = np.array(statistics.get_fitness_mean())
stdev_fitness = np.array(statistics.get_fitness_stdev())
plt.plot(generation, avg_fitness, 'b-', label="average")
plt.plot(generation, avg_fitness - stdev_fitness, 'g-.', label="-1 sd")
plt.plot(generation, avg_fitness + stdev_fitness, 'g-.', label="+1 sd")
plt.plot(generation, best_fitness, 'r-', label="best")
plt.title("Population's average and best fitness")
plt.xlabel("Generations")
plt.ylabel("Fitness")
plt.grid()
plt.legend(loc="best")
if ylog:
plt.gca().set_yscale('symlog')
plt.savefig(filename)
if view:
plt.show()
plt.close()
def plot_spikes(spikes, view=False, filename=None, title=None):
""" Plots the trains for a single spiking neuron. """
t_values = [t for t, I, v, u, f in spikes]
v_values = [v for t, I, v, u, f in spikes]
u_values = [u for t, I, v, u, f in spikes]
I_values = [I for t, I, v, u, f in spikes]
f_values = [f for t, I, v, u, f in spikes]
fig = plt.figure()
plt.subplot(4, 1, 1)
plt.ylabel("Potential (mv)")
plt.xlabel("Time (in ms)")
plt.grid()
plt.plot(t_values, v_values, "g-")
if title is None:
plt.title("Izhikevich's spiking neuron model")
else:
plt.title("Izhikevich's spiking neuron model ({0!s})".format(title))
plt.subplot(4, 1, 2)
plt.ylabel("Fired")
plt.xlabel("Time (in ms)")
plt.grid()
plt.plot(t_values, f_values, "r-")
plt.subplot(4, 1, 3)
plt.ylabel("Recovery (u)")
plt.xlabel("Time (in ms)")
plt.grid()
plt.plot(t_values, u_values, "r-")
plt.subplot(4, 1, 4)
plt.ylabel("Current (I)")
plt.xlabel("Time (in ms)")
plt.grid()
plt.plot(t_values, I_values, "r-o")
if filename is not None:
plt.savefig(filename)
if view:
plt.show()
plt.close()
fig = None
return fig
def plot_species(statistics, view=False, filename='speciation.svg'):
""" Visualizes speciation throughout evolution. """
if plt is None:
warnings.warn("This display is not available due to a missing optional dependency (matplotlib)")
return
species_sizes = statistics.get_species_sizes()
num_generations = len(species_sizes)
curves = np.array(species_sizes).T
fig, ax = plt.subplots()
ax.stackplot(range(num_generations), *curves)
plt.title("Speciation")
plt.ylabel("Size per Species")
plt.xlabel("Generations")
plt.savefig(filename)
if view:
plt.show()
plt.close()
def draw_net(config, genome, view=False, filename=None, node_names=None, show_disabled=True, prune_unused=False,
node_colors=None, fmt='svg'):
""" Receives a genome and draws a neural network with arbitrary topology. """
# Attributes for network nodes.
if graphviz is None:
warnings.warn("This display is not available due to a missing optional dependency (graphviz)")
return
if node_names is None:
node_names = {}
assert type(node_names) is dict
if node_colors is None:
node_colors = {}
assert type(node_colors) is dict
node_attrs = {
'shape': 'circle',
'fontsize': '9',
'height': '0.2',
'width': '0.2'}
dot = graphviz.Digraph(format=fmt, node_attr=node_attrs)
inputs = set()
for k in config.genome_config.input_keys:
inputs.add(k)
name = node_names.get(k, str(k))
input_attrs = {'style': 'filled', 'shape': 'box', 'fillcolor': node_colors.get(k, 'lightgray')}
dot.node(name, _attributes=input_attrs)
outputs = set()
for k in config.genome_config.output_keys:
outputs.add(k)
name = node_names.get(k, str(k))
node_attrs = {'style': 'filled', 'fillcolor': node_colors.get(k, 'lightblue')}
dot.node(name, _attributes=node_attrs)
if prune_unused:
connections = set()
for cg in genome.connections.values():
if cg.enabled or show_disabled:
connections.add((cg.in_node_id, cg.out_node_id))
used_nodes = copy.copy(outputs)
pending = copy.copy(outputs)
while pending:
new_pending = set()
for a, b in connections:
if b in pending and a not in used_nodes:
new_pending.add(a)
used_nodes.add(a)
pending = new_pending
else:
used_nodes = set(genome.nodes.keys())
for n in used_nodes:
if n in inputs or n in outputs:
continue
attrs = {'style': 'filled',
'fillcolor': node_colors.get(n, 'white')}
dot.node(str(n), _attributes=attrs)
for cg in genome.connections.values():
if cg.enabled or show_disabled:
#if cg.input not in used_nodes or cg.output not in used_nodes:
# continue
input, output = cg.key
a = node_names.get(input, str(input))
b = node_names.get(output, str(output))
style = 'solid' if cg.enabled else 'dotted'
color = 'green' if cg.weight > 0 else 'red'
width = str(0.1 + abs(cg.weight / 5.0))
dot.edge(a, b, _attributes={'style': style, 'color': color, 'penwidth': width})
dot.render(filename, view=view)
return dot
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment