Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
Z
zhimingd_comp30023_2019_project-2
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Zhiming Deng
zhimingd_comp30023_2019_project-2
Commits
98c41eb6
Commit
98c41eb6
authored
May 24, 2019
by
Zhiming Deng
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
0ed8bcc9
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
sha256.c
+160
-0
160 additions, 0 deletions
sha256.c
with
160 additions
and
0 deletions
sha256.c
0 → 100644
+
160
−
0
View file @
98c41eb6
#include
"sha256.h"
/*********************************************************************
* Filename: sha256.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the SHA-256 hashing algorithm.
SHA-256 is one of the three algorithms in the SHA2
specification. The others, SHA-384 and SHA-512, are not
offered in this implementation.
Algorithm specification can be found here:
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
This implementation uses little endian byte order.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include
<stdlib.h>
#include
<memory.h>
/****************************** MACROS ******************************/
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
/**************************** VARIABLES *****************************/
static
const
WORD
k
[
64
]
=
{
0x428a2f98
,
0x71374491
,
0xb5c0fbcf
,
0xe9b5dba5
,
0x3956c25b
,
0x59f111f1
,
0x923f82a4
,
0xab1c5ed5
,
0xd807aa98
,
0x12835b01
,
0x243185be
,
0x550c7dc3
,
0x72be5d74
,
0x80deb1fe
,
0x9bdc06a7
,
0xc19bf174
,
0xe49b69c1
,
0xefbe4786
,
0x0fc19dc6
,
0x240ca1cc
,
0x2de92c6f
,
0x4a7484aa
,
0x5cb0a9dc
,
0x76f988da
,
0x983e5152
,
0xa831c66d
,
0xb00327c8
,
0xbf597fc7
,
0xc6e00bf3
,
0xd5a79147
,
0x06ca6351
,
0x14292967
,
0x27b70a85
,
0x2e1b2138
,
0x4d2c6dfc
,
0x53380d13
,
0x650a7354
,
0x766a0abb
,
0x81c2c92e
,
0x92722c85
,
0xa2bfe8a1
,
0xa81a664b
,
0xc24b8b70
,
0xc76c51a3
,
0xd192e819
,
0xd6990624
,
0xf40e3585
,
0x106aa070
,
0x19a4c116
,
0x1e376c08
,
0x2748774c
,
0x34b0bcb5
,
0x391c0cb3
,
0x4ed8aa4a
,
0x5b9cca4f
,
0x682e6ff3
,
0x748f82ee
,
0x78a5636f
,
0x84c87814
,
0x8cc70208
,
0x90befffa
,
0xa4506ceb
,
0xbef9a3f7
,
0xc67178f2
};
/*********************** FUNCTION DEFINITIONS ***********************/
void
sha256_transform
(
SHA256_CTX
*
ctx
,
const
BYTE
data
[])
{
WORD
a
,
b
,
c
,
d
,
e
,
f
,
g
,
h
,
i
,
j
,
t1
,
t2
,
m
[
64
];
for
(
i
=
0
,
j
=
0
;
i
<
16
;
++
i
,
j
+=
4
)
m
[
i
]
=
(
data
[
j
]
<<
24
)
|
(
data
[
j
+
1
]
<<
16
)
|
(
data
[
j
+
2
]
<<
8
)
|
(
data
[
j
+
3
]);
for
(
;
i
<
64
;
++
i
)
m
[
i
]
=
SIG1
(
m
[
i
-
2
])
+
m
[
i
-
7
]
+
SIG0
(
m
[
i
-
15
])
+
m
[
i
-
16
];
a
=
ctx
->
state
[
0
];
b
=
ctx
->
state
[
1
];
c
=
ctx
->
state
[
2
];
d
=
ctx
->
state
[
3
];
e
=
ctx
->
state
[
4
];
f
=
ctx
->
state
[
5
];
g
=
ctx
->
state
[
6
];
h
=
ctx
->
state
[
7
];
for
(
i
=
0
;
i
<
64
;
++
i
)
{
t1
=
h
+
EP1
(
e
)
+
CH
(
e
,
f
,
g
)
+
k
[
i
]
+
m
[
i
];
t2
=
EP0
(
a
)
+
MAJ
(
a
,
b
,
c
);
h
=
g
;
g
=
f
;
f
=
e
;
e
=
d
+
t1
;
d
=
c
;
c
=
b
;
b
=
a
;
a
=
t1
+
t2
;
}
ctx
->
state
[
0
]
+=
a
;
ctx
->
state
[
1
]
+=
b
;
ctx
->
state
[
2
]
+=
c
;
ctx
->
state
[
3
]
+=
d
;
ctx
->
state
[
4
]
+=
e
;
ctx
->
state
[
5
]
+=
f
;
ctx
->
state
[
6
]
+=
g
;
ctx
->
state
[
7
]
+=
h
;
}
void
sha256_init
(
SHA256_CTX
*
ctx
)
{
ctx
->
datalen
=
0
;
ctx
->
bitlen
=
0
;
ctx
->
state
[
0
]
=
0x6a09e667
;
ctx
->
state
[
1
]
=
0xbb67ae85
;
ctx
->
state
[
2
]
=
0x3c6ef372
;
ctx
->
state
[
3
]
=
0xa54ff53a
;
ctx
->
state
[
4
]
=
0x510e527f
;
ctx
->
state
[
5
]
=
0x9b05688c
;
ctx
->
state
[
6
]
=
0x1f83d9ab
;
ctx
->
state
[
7
]
=
0x5be0cd19
;
}
void
sha256_update
(
SHA256_CTX
*
ctx
,
const
BYTE
data
[],
size_t
len
)
{
WORD
i
;
for
(
i
=
0
;
i
<
len
;
++
i
)
{
ctx
->
data
[
ctx
->
datalen
]
=
data
[
i
];
ctx
->
datalen
++
;
if
(
ctx
->
datalen
==
64
)
{
sha256_transform
(
ctx
,
ctx
->
data
);
ctx
->
bitlen
+=
512
;
ctx
->
datalen
=
0
;
}
}
}
void
sha256_final
(
SHA256_CTX
*
ctx
,
BYTE
hash
[])
{
WORD
i
;
i
=
ctx
->
datalen
;
// Pad whatever data is left in the buffer.
if
(
ctx
->
datalen
<
56
)
{
ctx
->
data
[
i
++
]
=
0x80
;
while
(
i
<
56
)
ctx
->
data
[
i
++
]
=
0x00
;
}
else
{
ctx
->
data
[
i
++
]
=
0x80
;
while
(
i
<
64
)
ctx
->
data
[
i
++
]
=
0x00
;
sha256_transform
(
ctx
,
ctx
->
data
);
memset
(
ctx
->
data
,
0
,
56
);
}
// Append to the padding the total message's length in bits and transform.
ctx
->
bitlen
+=
ctx
->
datalen
*
8
;
ctx
->
data
[
63
]
=
ctx
->
bitlen
;
ctx
->
data
[
62
]
=
ctx
->
bitlen
>>
8
;
ctx
->
data
[
61
]
=
ctx
->
bitlen
>>
16
;
ctx
->
data
[
60
]
=
ctx
->
bitlen
>>
24
;
ctx
->
data
[
59
]
=
ctx
->
bitlen
>>
32
;
ctx
->
data
[
58
]
=
ctx
->
bitlen
>>
40
;
ctx
->
data
[
57
]
=
ctx
->
bitlen
>>
48
;
ctx
->
data
[
56
]
=
ctx
->
bitlen
>>
56
;
sha256_transform
(
ctx
,
ctx
->
data
);
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for
(
i
=
0
;
i
<
4
;
++
i
)
{
hash
[
i
]
=
(
ctx
->
state
[
0
]
>>
(
24
-
i
*
8
))
&
0x000000ff
;
hash
[
i
+
4
]
=
(
ctx
->
state
[
1
]
>>
(
24
-
i
*
8
))
&
0x000000ff
;
hash
[
i
+
8
]
=
(
ctx
->
state
[
2
]
>>
(
24
-
i
*
8
))
&
0x000000ff
;
hash
[
i
+
12
]
=
(
ctx
->
state
[
3
]
>>
(
24
-
i
*
8
))
&
0x000000ff
;
hash
[
i
+
16
]
=
(
ctx
->
state
[
4
]
>>
(
24
-
i
*
8
))
&
0x000000ff
;
hash
[
i
+
20
]
=
(
ctx
->
state
[
5
]
>>
(
24
-
i
*
8
))
&
0x000000ff
;
hash
[
i
+
24
]
=
(
ctx
->
state
[
6
]
>>
(
24
-
i
*
8
))
&
0x000000ff
;
hash
[
i
+
28
]
=
(
ctx
->
state
[
7
]
>>
(
24
-
i
*
8
))
&
0x000000ff
;
}
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment